Essay Content is Strongly Related to Household Income and SAT Scores: Evidence from 60,000 Undergraduate Applications

AUTHORS
AJ Alvero
Stanford University
Sonia Giebel
Stanford University
Ben Gebre-Medhin
Mount Holyoke College
anthony lising antonio
Stanford University
Mitchell L. Stevens
Stanford University
Benjamin W. Domingue
Stanford University

ABSTRACT
There is substantial evidence of the potential for class bias in the use of standardized tests to evaluate college applicants, yet little comparable inquiry considers the written essays typically required of applicants to selective US colleges and universities. We utilize a corpus of 240,000 admissions essays submitted by 60,000 applicants to the University of California in November 2016 to measure the relationship between the content of application essays, reported household income, and standardized test scores (SAT) at scale. We quantify essay content using correlated topic modeling (CTM) and the Linguistic Inquiry and Word Count (LIWC) software package. Results show that essays have a stronger correlation to reported household income than SAT scores. Essay content also explains much of the variance in SAT scores, suggesting that essays encode some of the same information as the SAT, though this relationship attenuates as household income increases. Efforts to realize more equitable college admissions protocols can be informed by attending to how social class is encoded in non-numerical components of applications.

VERSION
April 2021

Essay Content is Strongly Related to Household Income and SAT Scores: Evidence from 60,000 Undergraduate Applications

AJ Alveroa,†, Sonia Giebela, Ben Gebre-Medhinb, anthony lising antonioa, Mitchell L. Stevensa, and Benjamin W. Dominguea,†

aStanford University
bMount Holyoke College
†Correspondence about the paper should be sent to ajalvero@stanford.edu and/or ben.domingue@gmail.com.

Abstract

There is substantial evidence of the potential for class bias in the use of standardized tests to evaluate college applicants, yet little comparable inquiry considers the written essays typically required of applicants to selective US colleges and universities. We utilize a corpus of 240,000 admissions essays submitted by 60,000 applicants to the University of California in November 2016 to measure the relationship between the content of application essays, reported household income, and standardized test scores (SAT) at scale. We quantify essay content using correlated topic modeling (CTM) and the Linguistic Inquiry and Word Count (LIWC) software package. Results show that essays have a stronger correlation to reported household income than SAT scores. Essay content also explains much of the variance in SAT scores, suggesting that essays encode some of the same information as the SAT, though this relationship attenuates as household income increases. Efforts to realize more equitable college admissions protocols can be informed by attending to how social class is encoded in non-numerical components of applications.

1 Introduction

The information selective colleges and universities use when evaluating applicants has been a perennial ethical and policy concern in the United States. For nearly a century, admissions officers have made use of scores on standardized tests to assess and compare applicants. Proponents of tests argue that they enable universal and unbiased measures of academic aptitude and may have salutary effects on fairness in evaluation when used as universal screens \cite{1, 2, 3, 4}; critics note the large body of evidence indicating a strong correlation between SAT scores and socioeconomic background, with some having dubbed the SAT a “wealth test” \cite{5, 6}.

There are many other components of admissions files, however, including the candidates’ primary opportunity to make their case in their own words: application essays. Yet there is virtually no comparative literature on the extent to which these materials may or may not covary with other applicant characteristics. How, if at all, do application essays correlate with household income and standardized test scores?

The movement for test-optional evaluation protocols \cite{7, 8} has gained more momentum in light of the public-health risks associated with in-person administration of standardized tests during the Covid-19 pandemic. To the extent that the elimination of standardized tests recalibrates the relative weight of other components of applications, the basic terms of holistic review, the current standard of best practice for jointly considering standardized tests alongside qualitative components of applications \cite{9, 10, 11}, are up for fresh scrutiny.

To inform this national conversation, we analyze a dataset comprising information from 60,000 applications submitted to the nine-campus University of California system in the 2016–2017 academic year to
observe the relationship between essay content, reported household income (RHI) and SAT score. The basic conceptual model we test is shown in Figure 1. The well-known fact that SAT scores show associations with household income is captured in the blue line. We observe such an association in our dataset as well. Here our primary aim is to test relationships along the red lines. We juxtapose results from an unsupervised, probabilistic approach using correlated topic modeling (CTM; [12, 13]), and a pre-determined, dictionary driven analysis using proprietary software, Linguistic Inquiry and Word Count (LIWC; [14]). We chose these two techniques because they are commonly used for analysis of textual data in other evaluative contexts [15, 16, 17]. While prior research using computational readings has considered the relationship between essay vocabularies and grammar with the gender, RHI, or subsequent grades of authors [18, 19, 20, 21], we extend this emerging literature by comparing the content of undergraduate application essays, household income, and standardized test scores at scale.

First, we identify the dictionary-based patterns and the topics that emerge through computational readings of the essay corpus (we refer to the CTM- and LIWC-derived outputs collectively as “essay content”). We find that easily countable features of essays, like the number of commas they contain, as well as certain topics, have strong correlations with RHI and SAT. Second, we use these features to examine patterning of essay content across reported household incomes. We find that essay content has a stronger relationship with RHI than that observed between SAT score and RHI. Third, observed associations between SAT scores and essay content persist even when we stratify analyses by RHI; the association is not driven entirely by the stratification of SAT scores across RHI. Taken together, our findings suggest that many of the associations with social class deemed concerning when they pertain to the SAT also pertain to application essays when essay content is measured (or “read”) computationally. These findings should be of immediate policy relevance given the changes in evaluation protocols that would come if standardized test scores were to be eliminated from college applications, an already growing trend.

Results

Describing essay content via externally-linked features and data-driven topics

In the 2016-2017 academic year, applicants to the University of California were given eight essay prompts and were required to write responses to any four prompts. We focus our analysis on a random sample of n = 59,723 applicants for first year admission. Additional information about the sample can be found in the Methods section. As each applicant wrote four essays, we have a corpus of 238,892 essays. Each essay was limited to 350 words and average essay length was near 348 words; applicants submitted 1,395 words on average across the four essays. We describe results based on analysis of what we call the “merged” essay: a concatenation of the four essays into one document. In the SI, we discuss analysis of essays written to
specific prompts; results are similar and can be seen in Tables S3 and S4.

We capture essay content via topic modeling and a dictionary-based technique. These approaches are distinctive in their foci: what applicants write about in essays versus how they are written.

Topic Modeling

Our first approach, correlated topic modeling (CTM; [12]), is a data-driven strategy that relies only upon the words in the essays (i.e., no external data is used). Topic modeling identifies semantic content via a generative, probabilistic model of word co-occurrences. Words that frequently co-occur are grouped together into “topics” and usually show semantic cohesion (e.g., a topic may include terms like “baseball”, “bat”, “glove” since such words tend to co-occur in a document). A given document is assumed to consist of a mixture of topics; estimation involves first specifying the number of topics and then estimating those mixture proportions. CTM has been used to measure changes in research publication topics and themes over time in academic fields such as statistics and education [17, 22, 23], and has also been used for more applied studies such as measuring the relationship between seller descriptions and sales in an online marketplace [24]. For a comprehensive overview of CTM and topic modeling more generally see [25].

Using CTM, we generated 70 topics across the full corpus that we use as independent variables for analysis. Details regarding topic construction can be found in the Methods section. The topics for the merged essays included a wide variety of themes (e.g., winning competitions, social anxiety, medical experiences, language experiences; see Table S1 in SI) but also included topics related to specific majors (e.g. physics, computer science, economics). We observed a range of associations between topical themes and either SAT scores or RHI, see Figure 2. For example, essays with more content on “human nature” and “seeking answers” tended to be written by applicants with higher SAT scores ($r = 0.53$ and $r = 0.57$ respectively); in contrast, essays with more content about “time management” and family relationships tended to be written by students with lower SAT scores ($r = -0.4$ and $r = -0.26$ respectively).

LIWC

Our second approach, LIWC [26], relies upon an external “dictionary” that identifies linguistic, affective, perceptual, and other quantifiable components of essay content. LIWC generates 90 such features (described by LIWC developers as “categories” [27]) based on word or character matches in a given document and the external dictionary. These include simple word and punctuation counts, grammatical categories such as pronouns and verbs, sentiment analysis, specific vocabularies such as family or health words, and stylistic

![Figure 2: Density of correlations between either RHI or total SAT score and either 70 topics (left) or 89 LIWC features (right).](image-url)
measures such as narrative writing. LIWC also generates composite variables from groups of categories, such as “analytical writing” based on frequency of function words such as articles and prepositions. For example, sentences using more personal pronouns like I, you, and she score lower in the analytic category than sentences using more articles like a, an, and the. Our models used 89 of the LIWC categories (see the Methods section for additional details) as independent variables.

As with the topics generated from CTM, we observed a range of associations between LIWC features and either SAT scores or RHI. Counts of total punctuation ($r = 0.343$), comma use ($r = 0.434$), and longer words ($r = 0.375$) were positively associated with SAT, for example, while function words (e.g. prepositions and articles; $r = -0.419$) and verbs ($r = -0.471$) were negatively associated with SAT; correlations for RHI followed a similar pattern. These findings parallel prior work focusing on a smaller sample of admission essays submitted to a single institution [20]. The strong correlations of individual features from CTM and LIWC help explain the strong associations from the regression models in later sections.

Both methods for quantifying essay content produce features that show varying levels of association with RHI and SAT scores. Although the approaches have important conceptual and methodological differences, they are complementary in that they suggest that multiple techniques may yield similar patterns. The relatively weak correlation between topics and LIWC categories (average correlation for topics and LIWC categories: $r = -0.001$; median correlation: $r = -0.011$) further suggests that the methods are complementary rather than redundant. In the following analyses, we probe the relative magnitudes of the associations in Figure 1. While the fact that many specific correlations are relatively large (see Figures 2 and S3 of the SI) is suggestive, we can simplify analysis by summarizing the predictive content of essays. To do so, we focus on the overall out-of-sample predictive accuracy obtained when we use all of the quantified essay content generated by either CTM or LIWC to predict either SAT scores or RHI. As a comparison, we also use RHI to predict SAT scores.

Essay content is more strongly associated with RHI than SAT scores

Having developed quantitative representations of essay content, we now estimate the strength of the relationships between essay content, RHI, and SAT. We compared adjusted R^2 from three out-of-sample linear regression models, with RHI as the dependent variable: Model A uses SAT scores as a predictor (SAT EBRW\(^1\) and SAT Math were tested separately) while Models B and C use topics and LIWC features, respectively, as predictors (i.e., Model A represents the blue line in Figure 1 while Models B and C represent the red arrow between RHI and the essays). Applicants who reported RHI below $\$10,000 (n = 1,911) were excluded because we suspected that many of them may have misreported parental income [18] (remaining $n = 57,812$). Note that Models B and C use essay content as predictors rather than as dependent variables; compressing the essays into a single outcome variable would result in substantial information loss.

Between 8–12% of variation in RHI is explained by SAT scores; see Table 1. These estimates are comparable to those from previous work: using data from seven University of California campuses collected between 1996–1999, estimated associations between logged household income and the SAT total were $R^2 \approx 0.11$ (Table 1 in [28]). Somewhat more variation is explained by Math scores than by EBRW scores and the total SAT score is roughly as predictive as the Math score alone. Turning to Models B and C, essay content is generally more predictive of RHI than SAT scores. Topics ($R^2 = 16\%$) are marginally better predictors of RHI than is LIWC ($R^2 = 13\%$). Note that the topics show higher predictive performance despite the LIWC-based model using 19 more predictors and external data.

Table 1 reports results on the merged essays. Results for individual essays, shown in the SI (Tables S3 and S4), are somewhat weaker, suggesting that some degree of respondent selection and or prompt-specific language could be playing a role in the main associations on which we focus here. It is also possible that the difference in performance is simply due to the merged essays providing more data (in terms of word count and sample size) than the individual essays. We also considered readability metrics [29, 30, 31, 32, 33] commonly used in education research in place of our primary metrics of essay content (CTM topics & LIWC features); we find much weaker associations between readability and SAT scores ($R^2 < 0.1$; see Table S5 in SI).

Collectively, these results suggest that essay content has a stronger association with RHI than do SAT scores. Given longstanding concern about the strength of the relationship between SAT scores and socie-
economic background, it is noteworthy to find a similar pattern across essay topics and dictionary features. Next we focus on the interplay between SAT scores and essay content. Specifically, we assess whether essay features can explain variation in applicant SAT scores.

SAT scores are strongly predicted by essay content

Table 2 summarizes the observed relationship between essay features and SAT scores. Topical and dictionary-derived predictors of SAT scores are relatively robust: roughly 43-49% of the total SAT score is explained by essay content, with some variation around these values for the SAT EBRW and SAT Math. The strength of the prediction is surprising. Essay content is far more predictive of SAT scores than is, for example, high school GPA ($R^2 = 0.04$ between high school GPA and the total SAT score [28]). Findings are especially noteworthy with respect to the topics given that they are generated in an atheoretical manner that was blind to information about applicants’ family background or academic performance.

<table>
<thead>
<tr>
<th>Essay</th>
<th>R^2</th>
<th>95% Conf. Interval</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT Composite</td>
<td>0.119</td>
<td>[0.115, 0.124]</td>
<td></td>
</tr>
<tr>
<td>SAT EBRW</td>
<td>0.083</td>
<td>[0.079, 0.087]</td>
<td></td>
</tr>
<tr>
<td>SAT Math</td>
<td>0.120</td>
<td>[0.115, 0.124]</td>
<td></td>
</tr>
<tr>
<td>Topics</td>
<td>0.161</td>
<td>[0.157, 0.167]</td>
<td></td>
</tr>
<tr>
<td>LIWC</td>
<td>0.129</td>
<td>[0.127, 0.136]</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Out-of-sample prediction error for prediction of RHI by topics and SAT scores using 10-fold CV.

Collectively, findings from Tables 1–2 suggest that the content of essays—their themes, diction, grammar, and punctuation—encodes substantial information about family background (as captured by RHI) and academic performance (as captured by the SAT). Designers of application protocols that include essays as a component will need to consider the strength of the relationship between essay content, family background, and academic performance, a topic we return to in the Discussion. In the next section we examine patterning by RHI in the association between essay content and SAT score.

Associations between essay content and SAT score persist within RHI decile

While we have shown in separate analyses that essay content is associated with SAT scores and with reported household income, it is possible that the strength of the relationship with essay content and SAT varies with

These results are based on an older version of the SAT (note that they refer to the SAT Verbal section as opposed to the EBRW) so may not be fully comparable with the results reported here.
income. To study socioeconomic variation in the relationship between essays and SAT, we split the data by RHI decile. We then repeated our test from Table 2 of the associations between essay content and SAT score within each income decile. This approach—modeled after a similar approach that trained word vectors for each RHI quartile [19]—will determine whether the observed patterns in Table 2 are due to a root cause—social class, see Figure 1—or whether there are distinctive features of essay content even within social class that predict SAT score.

After stratifying by RHI decile, essay content is still quite predictive of SAT score (see Figure 3). Essays written by applicants in the highest RHI deciles have the weakest relationship with their SAT scores. This is true for both LIWC features and topics: associations are between $R^2 = 0.25$ and $R^2 = 0.3$ for the highest income students. We observed the strongest associations, $R^2 \approx 0.4$, between essay content and SAT scores for middle-income students. Given the consistency of these relationships across both the topical and dictionary predictor models, a likely reason for this pattern is that variation in SAT scores is smallest in the highest deciles of RHI (see Table S2). However, our models continue to explain a substantial amount of variation in these stratified analyses, suggesting that the variation in essay content illustrated in Table 2 is not purely a signature of RHI.

![Figure 3: R^2 of total SAT predicted by Topics or LIWC categories when stratified by RHI decile.](image)

Discussion

We analyzed the relationships between applicants’ reported household income, SAT scores, and the content of application essays from a random sample of 240,000 essays submitted by 60,000 applicants to the University of California in 2016. We find that essay content is more strongly associated with household income than is SAT score. We also find that the content of essays is a strong predictor of applicant SAT, with reported R^2 of nearly 50% in some models. The relationship between essay content and SAT score is strongest for middle-income students and weakest for high-income students. Given the controversy surrounding the use of standardized test scores in selective college admissions, the associations reported here should inform ongoing discussion about fairness and bias in holistic review.

Our results not only confirm previous research illustrating how social class manifests in standardized tests such as the SAT, but show further that class is present in aspects of the file that are often perceived as qualitative counterweights to standardized assessments. Standardized tests are designed to produce a concise ranking among applicants; by contrast, essays have no inherent hierarchical relation with each other and instead provide readers with contextual and non-cognitive information for evaluating applicants [34]. Essays are intended to provide information about an applicant’s resources, conditions for learning, and personal characteristics such as motivation, resilience, leadership, and self-confidence. Indeed the expressed purpose
of application essays, and of holistic review more generally, is to enable consideration of applicant attributes beyond what is captured in a few easily comparable numbers [35, 36, 37, 11].

Yet however its constituent parts are conceptualized, the entire evaluation process is ultimately an effort to sort applicants along a single dimension: accept or reject. While it may not be anyone’s intention to strictly rank application essays, they ultimately are one component of a process that is inherently simplifying applicant fitness through a binary evaluation. Idealistically, the essays allow applicants to present their case for admission through idiosyncratic narratives. These narratives then help admissions officers consider the entire profile of the applicant as they make admission decisions and try to construct a class filled with diverse backgrounds and perspectives. But our findings suggest that such holistic review may be redundant in an unanticipated way: Household income, test scores, and essay content are highly interrelated. Future studies might investigate if and how this relationship is detected or understood by the admissions professionals who read and evaluate application essays.

Meanwhile, inherited concern about associations between socioeconomic status and SAT scores should probably be expanded to include what were long understood as “qualitative” components of applications that are now easily amenable to computational “reading” at scale. If computational readings consistently find that essay content is largely a reflection of socioeconomic resources, then essay requirements may be worthy of the same level of critical scrutiny that standardized testing has heretofore received. Removing the SAT would likely remove practical barriers to selective colleges for at least some students [38], but if the essays encode much of the information as SAT scores and have a stronger relationship with household income, then the use of essays in admissions decisions warrants careful consideration. While there is evidence supporting a relationship between non-cognitive attributes and educational outcomes in college [39], there is at present only minimal research on the evaluative content of application essays. These texts may prove to be a complex mosaic of socioeconomic status, academic ability, educational performance, social context, and individual-level characteristics. Researchers might more closely examine the metrical features of application essays, and extend similar lines of inquiry to other qualitative application components, such as letters of recommendation and interview write-ups. Further, allowing machines to “read” essays either alongside or in place of human reviewers may seem far-fetched to some, but it is standard practice in other settings in education [40] and the development of automated protocols for evaluation of candidates in related spaces is no longer hypothetical [41].

Ever more fierce competition for limited seats at prestigious schools will require constant attention to ensure any degree of fairness in evaluation protocols. “Campbell’s Law”—“The more any quantitative social indicator is used for social decision-making, the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor” [42, p.85]—suggests that there are no simple means of ensuring fairness. Elimination of standardized tests will not increase the number of seats at elite schools, but it may increase the number of applications those schools receive. We suspect it will be increasingly tempting for admissions offices to pursue automated means of reviewing application portfolios; doing so would almost inevitably incite college hopefuls to devise new ways of gaming the system. Whatever the future of holistic review, our results strongly suggest that the imprint of social class will be found in even the fuzziest of application materials.

Materials and Methods

Data
Our data, provided by University of California, was a random sample of 60,000 applications drawn from an application pool of more than 165,000 individuals who submitted application materials in November 2016 for matriculation in Fall 2017. The shared data included applicant essays, raw RHI, SAT scores, and various personal characteristics about each applicant. The essays were required components of applications. Each applicant was expected to write to four essay prompts from eight choices, yielding a dataset of 240,000 essays. Prior to any analysis, we removed all applicants who wrote essays for the transfer admissions prompt and applicants with merged essays shorter than 50 characters (n = 59,723). The prompts are listed in the SI and described in more detail in related work [43].

3 Their removal may also limit applicants’ ability to know how they might fare in college, a crucial signal [2].
Text Pre-Processing

We largely focused on the merged text resulting from collapsing all four admissions essays into a single document. We pre-processed these documents prior to analysis using the quanteda package in R [44]. We removed English stopwords, stemmed the words (Porter Snowball stemmer [45]), lower-cased all characters, and removed all punctuation and numbers. We also ensured that there was a whitespace character after all periods and commas (we found that many students did not add expected spaces after periods and commas). For example, some applicants might have written “This is a sentence. This is a different sentence.” rather than “This is a sentence. This is a different sentence.”.

Topics: Hyperparameter Tuning

Hyperparameter tuning for topic modeling is a well-known methodological challenge. Since we use the topics as predictors and are less concerned with their semantic coherence and the clarity of resulting topics, we relied on quantitative measures of topic quality using the ldatuning package in R [46]. This package uses four metrics [47, 48, 49, 50] to estimate a reasonable number of topics (details shown in SI). After standardizing the results for the four equations, we selected the number of topics which had the best average performance across the four metrics (70 topics for the merged essays, 50 topics for the single essays). See Figure 4 for a visual representation of this approach.

We then used the stm (structural topic modeling; [13]) package in R to generate the number of topics suggested by our ldatuning approach. The stm function in the package defaults to CTM when covariates are omitted.

Dictionary Features

We used all of the features available except for “Dash” because of incompatible formatting between the essays and dashes detected by LIWC, therefore generating 89 of 90 possible categories for each essay.
Linear Model Details

R^2 estimates for out-of-sample predictions are based on 10-fold cross-validation with a train/test split of 90%/10% to prevent overfitting [51]. We report the average R^2 across all folds. The 95% confidence intervals were constructed via 10,000 bootstrap replications. RMSE is root mean squared error, the standard deviation of the prediction errors in a model. Given that a single document is approximated as a mixture of topics, the topic scores always sum to unity within an essay. To address collinearity, we removed one topic from model B.

To calibrate our approach, we applied our analytic pipeline to data from a previous study of application essays [20]. That previous study uses the LIWC variables from the 2007 version of the software for each applicant’s essay and their SAT equivalent score (many applicants took the ACT). When we use that study’s data in our analytic pipeline, we explain less variation in SAT scores via LIWC variables ($R^2 = 0.21$) than in our data. This is presumably due to two sampling factors that narrowed the range of content in those essays: the prior study’s data came from students who were admitted to, and eventually enrolled at, a single-campus flagship state institution (University of Texas at Austin) while ours include essays from all applicants to the multi-campus University of California. Their study also used a different, older version of LIWC.

References

[19] Noah Arthurs and AJ Alvero. Whose truth is the “ground truth”? college admissions essays and bias in word vector evaluation methods.

Essay Content is Strongly Related to Household Income and SAT Scores: Evidence from 60,000 Undergraduate Applications

Supplemental Information (SI)

Contents

1 Additional Methods 2
 1.1 Choosing k topics ... 2
 1.2 Metrics for identification of top terms .. 2

2 Additional Results 3
 2.1 Top terms for merged essay topics .. 3
 2.2 Correlations of essay content with RHI and SAT 3
 2.3 SAT Distributions: Mean and Variance by RHI Decile 3
 2.4 Creative Side & Significant Challenge 3
 2.5 Readability ... 3

3 Additional Materials 4
 3.1 Essay Prompts .. 4
 3.2 Code ... 4
1 Additional Methods

1.1 Choosing \(k \) topics

The \texttt{ldatuning} package uses four metrics to calculate an optimal number of topics\(^1\)\(^2\)\(^3\)\(^4\)\(^5\). Results from \texttt{ldatuning} package (significant challenge and creative side) seen in Figures [S1] and [S2]. The results for each of the methods are all rescaled to have mean zero to help make them comparable. The optimal value generated by this method is the number of topics where each of the four points are closest together, in this case 50.

1.2 Metrics for identification of top terms

The \texttt{stm} package provides the top terms for each generated topic based on calculations from various metrics; we focus on FLEX (frequent exclusive) and highest probability.

- FLEX is the weighted harmonic mean of a given word in terms of its overall frequency in the corpus and exclusivity to a given topic\(^6\). FLEX was designed to balance the frequency of a given word with its exclusivity to a topic relative to other topics. For word \(f \) in topic \(k \), \(FRELX_{f,k} \) is a word’s harmonic mean of the word’s exclusivity to the topic \(\phi_{f,k} \) and topic specific frequency \(\mu_{f,k} \):

\[
FRELX_{f,k} = \left(\frac{w}{ECDF_{\phi_{f,k}}(\phi_{f,k})} + \frac{1-w}{ECDF_{\mu_{f,k}}(\mu_{f,k})} \right)^{-1}
\]

\(ECDF_{\phi_{f,k}} \) is the empirical CDF of the values of \(x \) over the first index and \(w \) is a weighting parameter for exclusivity.

- Highest probability are the words with the highest topic-word distribution parameters.

\(^1\)See \url{https://github.com/nikita-moor/ldatuning/blob/master/R/main.R}
2 Additional Results

2.1 Top terms for merged essay topics
The top terms for each topic identified via CTM are listed in Table S1. The authors created the topic labels based on themes suggested by the top terms.

2.2 Correlations of essay content with RHI and SAT
Figure S3 shows correlations between individual topics (right) and LIWC features (left) and RHI/SAT.

2.3 SAT Distributions: Mean and Variance by RHI Decile
Tables S2 shows mean & SD of total SAT score as a function of RHI. Note that variance is lower in the top RHI deciles.

2.4 Creative Side & Significant Challenge
Tables S3 and S4 shows results in parallel to Tables 1 and 2 of main text but using essays within the two prompts we focus on here.

2.5 Readability
Associations between Readability metrics and RHI/SAT are shown in Table S5. We derived the readability metrics with the quanteda package in R using the textstat_readability function [6].
3 Additional Materials

3.1 Essay Prompts

Essay prompts are as follows²:

1. Describe an example of your leadership experience in which you have positively influenced others, helped resolve disputes, or contributed to group efforts over time.

2. Every person has a creative side, and it can be expressed in many ways: problem solving, original and innovative thinking, and artistically, to name a few. Describe how you express your creative side.

3. What would you say is your greatest talent or skill? How have you developed and demonstrated that talent over time?

4. Describe how you have taken advantage of a significant educational opportunity or worked to overcome an educational barrier you have faced.

5. Describe the most significant challenge you have faced and the steps you have taken to overcome this challenge. How has this challenge affected your academic achievement?

6. Think about an academic subject that inspires you. Describe how you have furthered this interest inside and/or outside of the classroom.

7. What have you done to make your school or your community a better place?

8. Beyond what has already been shared in your application, what do you believe makes you stand out as a strong candidate for admissions to the University of California?

3.2 Code

The code used in this study can be found on the github page https://github.com/ajalvero/SAT_and_Essays.

²See https://admission.universityofcalifornia.edu/_assets/files/how-to-apply/uc-personal-questions-guide-freshman.pdf
References

Figure S1: Results from `ldatuning` package in R. Suggest 50 topics for modeling significant challenge essays.
Figure S2: Results from ldatuning package in R. Suggest 50 topics for modeling creative essays.
Table S1: Topics generated from merged essays. Topic names were created by authors based on top terms from highest probability and FREX metrics.
Figure S3: Correlations, merged essays
<table>
<thead>
<tr>
<th>Decile</th>
<th>Mean</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (highest)</td>
<td>1340.48</td>
<td>130.45</td>
</tr>
<tr>
<td>9</td>
<td>1306.40</td>
<td>141.03</td>
</tr>
<tr>
<td>8</td>
<td>1286.41</td>
<td>145.38</td>
</tr>
<tr>
<td>7</td>
<td>1260.13</td>
<td>149.10</td>
</tr>
<tr>
<td>6</td>
<td>1242.99</td>
<td>154.66</td>
</tr>
<tr>
<td>5</td>
<td>1201.95</td>
<td>162.14</td>
</tr>
<tr>
<td>4</td>
<td>1157.33</td>
<td>160.46</td>
</tr>
<tr>
<td>3</td>
<td>1128.28</td>
<td>163.14</td>
</tr>
<tr>
<td>2</td>
<td>1116.19</td>
<td>159.74</td>
</tr>
<tr>
<td>1 (lowest)</td>
<td>1101.86</td>
<td>157.85</td>
</tr>
</tbody>
</table>

Table S2: SAT Mean and Standard Deviation by RHI Decile, Merged Essays
<table>
<thead>
<tr>
<th>Essay</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. SAT predicting RHI</td>
<td></td>
</tr>
<tr>
<td>SAT: Signif. Challenge</td>
<td>0.1171</td>
</tr>
<tr>
<td>SAT: Creative Side</td>
<td>0.1065</td>
</tr>
<tr>
<td>SAT EBRW: Signif. Challenge</td>
<td>0.0806</td>
</tr>
<tr>
<td>SAT EBRW: Creative Side</td>
<td>0.0739</td>
</tr>
<tr>
<td>SAT Math: Signif. Challenge</td>
<td>0.1175</td>
</tr>
<tr>
<td>SAT Math: Creative Side</td>
<td>0.1063</td>
</tr>
<tr>
<td>B. Topics predicting RHI</td>
<td></td>
</tr>
<tr>
<td>Signif. Challenge</td>
<td>0.1050</td>
</tr>
<tr>
<td>Creative Side</td>
<td>0.0560</td>
</tr>
<tr>
<td>C. LIWC predicting RHI</td>
<td></td>
</tr>
<tr>
<td>Signif. Challenge</td>
<td>0.0973</td>
</tr>
<tr>
<td>Creative Side</td>
<td>0.0645</td>
</tr>
</tbody>
</table>

Table S3: Out-of-sample prediction error for prediction of RHI by topics and SAT scores using 10-fold CV.
<table>
<thead>
<tr>
<th>Essay</th>
<th>R^2</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signif. Challenge</td>
<td>0.3039</td>
<td>142.75</td>
</tr>
<tr>
<td>Creative Side</td>
<td>0.2800</td>
<td>145.15</td>
</tr>
<tr>
<td>SAT EBRW: Signif. Challenge</td>
<td>0.2771</td>
<td>71.72</td>
</tr>
<tr>
<td>SAT EBRW: Creative Side</td>
<td>0.2429</td>
<td>73.63</td>
</tr>
<tr>
<td>SAT Math: Signif. Challenge</td>
<td>0.2734</td>
<td>85.95</td>
</tr>
<tr>
<td>SAT Math: Creative Side</td>
<td>0.2645</td>
<td>86.30</td>
</tr>
<tr>
<td>LIWC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signif. Challenge</td>
<td>0.3019</td>
<td>142.95</td>
</tr>
<tr>
<td>Creative Side</td>
<td>0.3176</td>
<td>141.30</td>
</tr>
<tr>
<td>SAT EBRW: Signif. Challenge</td>
<td>0.2588</td>
<td>72.57</td>
</tr>
<tr>
<td>SAT EBRW: Creative Side</td>
<td>0.2660</td>
<td>72.42</td>
</tr>
<tr>
<td>SAT Math: Signif. Challenge</td>
<td>0.2766</td>
<td>85.71</td>
</tr>
<tr>
<td>SAT Math: Creative Side</td>
<td>0.2943</td>
<td>84.46</td>
</tr>
</tbody>
</table>

Table S4: Out-of-sample prediction error for prediction of SAT scores by topics using 10-fold CV.
Table S5: Readability scores predicting RHI and total SAT score, merged essays

<table>
<thead>
<tr>
<th>Readability Metric</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. RHI</td>
<td></td>
</tr>
<tr>
<td>Flesch Reading Ease</td>
<td>0.0158</td>
</tr>
<tr>
<td>Flesch-Kincaid Readability</td>
<td>0.0024</td>
</tr>
<tr>
<td>Dale-Chall</td>
<td>0.0180</td>
</tr>
<tr>
<td>Gunning Fog</td>
<td>0.0039</td>
</tr>
<tr>
<td>SMOG</td>
<td>0.0139</td>
</tr>
<tr>
<td>B. SAT</td>
<td></td>
</tr>
<tr>
<td>Flesch Reading Ease</td>
<td>0.0778</td>
</tr>
<tr>
<td>Flesch-Kincaid Readability</td>
<td>0.0204</td>
</tr>
<tr>
<td>Dale-Chall</td>
<td>0.0924</td>
</tr>
<tr>
<td>Gunning Fog</td>
<td>0.0265</td>
</tr>
<tr>
<td>SMOG</td>
<td>0.0752</td>
</tr>
</tbody>
</table>