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Using Pooled Heteroskedastic Ordered Probit Models 

to Improve Small-Sample Estimates of Latent Test Score Distributions 

 

Abstract 
 
This paper describes an extension to the use of heteroskedastic ordered probit (HETOP) models to 

estimate latent distributional parameters from grouped, ordered-categorical data by pooling across 

multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number 

of students in schools or districts scoring in each of a small number of ordered “proficiency” levels. 

HETOP models can be used to estimate means and standard deviations of the underlying (latent) test 

score distributions, but may yield biased or very imprecise estimates when group sample sizes are small. 

A simulation study demonstrates that the pooled HETOP models described here can reduce the bias and 

sampling error of standard deviation estimates when group sample sizes are small. Analyses of real test 

score data demonstrate use of the models and suggest the pooled models are likely to improve estimates 

in applied contexts.  
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 States administer millions of standardized assessments to public school students annually as part 

of their school accountability systems. The results of these assessments are often made publicly available 

only in highly coarsened form, and so are much less useful than they might be. Many states, for example, 

report the number students in a particular school or district scoring in each of a small number of ordered 

performance categories, such as “basic,” “proficient,” or “advanced,” rather than reporting the overall 

mean and standard deviation of students’ scores. These are referred to as “coarsened” test score data 

because they arise from coarsening continuous test scores according to a set of pre-determined cut 

scores. Such data have many widely recognized shortcomings (Ho, 2008; Ho & Reardon, 2012; Holland, 

2002; Jacob et al., 2013), but continue to be a primary, and sometimes the only, publicly available source 

of state or district achievement test data. Having access to estimates of the mean and standard deviation 

of test scores can support a wider range of interpretations and analyses, ultimately leading to more 

accurate and useful interpretations about student achievement. 

Reardon et al. (2017) described how heteroskedastic ordered probit (HETOP) models can be used 

to estimate the underlying means and standard deviations of the test score distributions based on 

coarsened test score data via maximum likelihood (ML), thus overcoming some limitations of the 

coarsening. In addition, because HETOP models use only ordinal information in the data, they do not rely 

on common interval scale assumptions. This fact provides some interpretational benefits and allows the 

models to be connected to other widely used ordinal statistics, as we describe in more detail below. Use 

of the HETOP model in this context does require that the coarsened scores in each group be based on a 

common test (or other measure) across groups that is coarsened using a common set of cut scores. At 

the same time, HETOP models can readily be applied to other contexts in which grouped, ordered-

categorical scores are available and there is a need to summarize or compare the underlying distributions 

across groups. Examples include analyzing the aggregate responses to a Likert-style survey item across 

groups or across time, comparing aggregated Apgar scores (Apgar, 1953) across hospitals or regions, or 
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analyzing continuous variables such as income that are reported in ordered categories in aggregate data 

sources such as the census.  

 The HETOP model described by Reardon et al. (2017) has some important limitations, however. 

When group sample sizes are small, the standard deviation estimates produced by the HETOP model are 

negatively biased and have large sampling variances (Reardon et al., 2017). Sparse data is the primary 

cause of this problem; when some groups have no observations in one or more categories, the coarse 

data provide limited information about the underlying distribution. In some cases finite ML estimates may 

not exist (Agresti, 2013). These sparse data problems can occur frequently, particularly in the context of 

analyzing coarsened test score data, where group sample sizes are often small and the cut scores used to 

coarsen the original test scores may be asymmetrically located throughout the distribution. 

Researchers have proposed several methods to improve small-sample HETOP estimates. To 

illustrate how these approaches work, consider a case in which a HETOP model is used to estimate, from 

coarsened proficiency data, the distribution of mathematics achievement of third graders in each school 

across an entire state. As described in prior work, the HETOP model requires that all students complete 

the same test and that scores were coarsened using a common set of cut scores across all schools. To 

overcome small-sample problems, Reardon et al. (2017) proposed using models that constrain standard 

deviations to be equal across some or all schools in the sample. These constrained models attempt to 

improve standard deviation estimates for schools with small sample sizes by borrowing information from 

other small schools and estimating a single, common third grade mathematics standard deviation 

parameter for these small schools. In their most extreme form, the constrained models estimate only a 

single standard deviation parameter for all schools, regardless of size. Lockwood et al. (2018) describe 

Bayesian HETOP models that use a form of shrinkage estimators to improve small-sample estimates by 

borrowing information from other schools that are similar on observed covariates. Both of these 

approaches rely on borrowing information across groups (schools, in this case) to improve small-sample 
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estimates, which can preclude the study of heterogeneity of within-group variances and rely on the 

potentially unrealistic assumption that the within-group variances are equal. 

In this paper we propose a generalized version of the HETOP model, which we refer to as a 

pooled HETOP model, that can be used to estimate multiple latent distributions for each group 

simultaneously when coarsened data are available from multiple measures or time points. Returning to 

the case of achievement testing, analysts will often have access to additional sets of coarsened data for 

each school based on tests administered in other grades, years, or subjects. The pooled HETOP model 

allows these distributions to be estimated simultaneously, even when the tests and cut scores vary across 

grades, years, or subjects. Estimating these distributions simultaneously allows the model to use 

information from the same school in other grades, years, or subjects to improve estimates rather than 

borrowing information from different schools within the same grade, year, or subject. The intuition 

behind our approach is that when possible, it is preferable to pool information from the same group 

observed on different occasions rather than to pool information across different groups observed on the 

same occasion. This is partly an empirical question, and we analyze test score data from a national 

database to evaluate the tradeoff between pooling across versus within groups in the context of 

aggregate coarsened test score data. 

 The remainder of the paper is organized as follows. Section 1 provides an explanation of the 

HETOP model in the context of analyzing coarsened test score data, and describes an extension of the 

model to define what we refer to as the pooled HETOP model, which can be used to estimate 

distributions across multiple tests simultaneously. Section 2 analyzes test scores in a national database to 

evaluate the plausibility of assumptions made in the pooled HETOP model and to provide empirical 

evidence that placing constraints within rather than between groups is preferable. Section 3 uses a 

Monte Carlo simulation to evaluate how well the pooled HETOP model can recover parameters using 

small sample sizes under known conditions, and compares performance to the standard HETOP model 
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and a constrained homoskedastic ordered probit model. Section 4 uses school-level coarsened 

proficiency data from a statewide mathematics assessment to illustrate the use of a pooled HETOP model 

in practice. Section 5 concludes with a brief discussion. 

1. Statistical Models 

To formalize discussion of the HETOP model, let there be a set of 𝐺 groups (e.g., schools or 

districts). Students within each group take the same test and their scores are coarsened into one of 𝐾 

ordered proficiency categories using a common set of cut scores across all groups. We assume that there 

is an underlying, normally distributed latent variable 𝑦∗ within each group that was coarsened into the set 

of 𝐾 ordered categories based on a set of 𝐾 − 1 ordered cut scores denoted 𝑐1, … , 𝑐𝐾−1, where  𝑐𝑘−1 <

𝑐𝑘 for all 𝑘. We define 𝑐0 = −∞ and 𝑐𝐾 = +∞. More formally, we assume that 

 𝑦𝑔𝑖
∗ ~𝑁(𝜇𝑔 , 𝜎𝑔), ( 1 ) 

where 𝑦𝑔𝑖
∗   represents an unobserved continuous score for student 𝑖 in group 𝑔, and 𝜇𝑔 and 𝜎𝑔 are the 

mean and standard deviation, respectively, in group 𝑔. Let 𝐍 be a 𝐺 by 𝐾 matrix, with elements 𝑛𝑔𝑘  equal 

to the number of students in group 𝑔 scoring in category 𝑘. 

We do not observe the values of 𝑦𝑔𝑖
∗ , but rather observe the ordered categorical variable 𝑥𝑔𝑖,  𝑥 ∈

{1, … , 𝐾}, for each student 𝑖 in group 𝑔, where 

 𝑥𝑔𝑖 = 𝑘 if 𝑐𝑘−1 < 𝑦𝑔𝑖
∗ ≤ 𝑐𝑘 . ( 2 ) 

The model-implied proportion of students in group 𝑔 scoring in category 𝑘 is 

 𝜋𝑔𝑘 = Φ (
𝜇𝑔 − 𝑐𝑘−1

𝜎𝑔
) − Φ (

𝜇𝑔 − 𝑐𝑘

𝜎𝑔
) = Pr(𝑐𝑘−1 < 𝑦𝑔𝑖

∗ ≤ 𝑐𝑘), ( 3 ) 

where Φ(•) is the standard normal cumulative distribution function. This model is also sometimes 

referred to as a heterogeneous choice model (e.g., Alvarez & Brehm, 1995; Keele & Park, 2006; Williams, 

2009), a rational model (McCullagh & Nelder, 1989), or a location-scale model (e.g., Cox, 1995; 

McCullagh, 1980). The use of HETOP models to estimate and interpret the means and standard deviations 
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of 𝑦∗ in each group is a generalization of the ML-based estimator of 𝑉, an ordinal method for estimating 

standardized achievement gaps between two groups described by Ho and Reardon (2012). The model can 

also be applied to the context of receiver operating characteristic curves (Dorfman & Alf, 1969; Tosteson 

& Begg, 1988). 

Following the notation of Reardon et al. (2017), let 𝑛𝑔𝑘  be the number of students in group 𝑔 

scoring in category 𝑘 and let 𝐍 be the 𝐺 × 𝐾 matrix of observed 𝑛𝑔𝑘  values. The goal is to estimate the 

vectors 𝐌 = [𝜇1, … , 𝜇𝐺]𝑡, 𝚺 = [𝜎1, … , 𝜎𝐺]𝑡, and 𝐂 = [𝑐1, … , 𝑐𝐾−1]𝑡.1 In practice, 𝚪 = [𝛾1, … , 𝛾𝐺]𝑡 is 

estimated in place of 𝚺, where 𝛾𝑔 = ln(𝜎𝑔). This ensures that the estimates of 𝜎𝑔 will always be positive. 

Following estimation of 𝚪, we have �̂� = [𝑒�̂�1 , … , 𝑒�̂�𝐺 ]
𝑡
. This is similar to the regression model with 

heterogeneous variances proposed by Harvey (1976). Reardon et al. (2017) describe how to estimate 

these parameters and their standard errors using ML. The estimation is based on expressing the log-

likelihood function for the data as 

 𝑙(𝐍|𝐌, 𝚺, 𝐂) = 𝐴 + ∑ ∑ 𝑛𝑔𝑘 ln (Φ (
𝜇𝑔 − 𝑐(𝑘−1)

𝑒𝛾𝑔
) − Φ (

𝜇𝑔 − 𝑐𝑘

𝑒𝛾𝑔
))

𝐾

𝑘=1

𝐺

𝑔=1

, ( 4 ) 

where 𝐴 is a constant based on the multinomial distribution. The scale of the 𝑦∗ variable is undefined and 

constraints must be placed on the model parameters to make the model identified. Reardon et al. (2017) 

describe different sets of equivalent constraints that can be used, as well as a process to linearly 

transform the resulting estimates of 𝚳 and 𝚺 to a scale such that the overall mean of 𝑦∗ is 0 and the 

standard deviation is 1 (i.e., 𝑦∗ is in a standardized metric). 

  

 
1 In some cases, researchers may know the operational cut scores used to coarsen the original test scores. However, 
because the original test score metric may not be the same as the latent, normal 𝑦∗ metric, these cut scores cannot 
necessarily be used as fixed values when estimating the other model parameters. In cases where researchers 
believe the original scale score metric meets certain normality assumptions, then it would be possible to treat the 
cut scores as fixed values and estimate the remaining parameters relative to those cuts cores. Reardon et al. (2017) 
discuss this issue in greater detail. 
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Assumptions and Interpretation of the HETOP Model 

 The primary assumption of the HETOP model is that test score distributions are respectively 

normal and thus a probit link can adequately summarize the data (Albert & Chib, 1993; Ho & Haertel, 

2006; Ho & Reardon, 2012; Reardon & Ho, 2015). Let 𝑦 denote the latent test scores in their original, 

continuous metric. The scores are said to be respectively normal if there is a single, monotonic function 

𝑔(𝑦) = 𝑦∗ that can transform the original scale scores into the 𝑦∗ metric, in which the within-group 

distributions are all normal. The HETOP model estimates the means and standard deviations of 

achievement expressed in the 𝑦∗ metric, not necessarily the original test score metric. 

It would be possible to use alternate within-group distributional forms, such as logistic 

distributions. In that case, the assumption would be that the latent distributions were respectively 

logistic. We elect to use normal distributions (i.e., a probit link function) due to their familiarity for many 

researchers and because analyses of real test score data by Reardon et al. (2017) suggest the respective 

normality assumption is reasonable and likely to be satisfied in practice when analyzing coarsened test 

score data. Prior research using similar methods in the two-group case to estimate achievement gaps 

suggest these models are likely to be robust to violations of respective normality and that the probit 

transformation may yield more accurate estimates than the logit transformation (Ho & Reardon, 2012). 

The HETOP model parameters can be viewed as ordinal statistics, because they rely only on 

ordinal information in the data. That is, the 𝑦∗ metric is invariant to monotonic transformations of the 

original score scale – any monotonic transformation to the original latent score scale (that also 

transforms the cut scores) will lead to identical parameter estimates in the 𝑦∗ metric. Because there may 

be doubts about whether test score scales have meaningful interval properties (Ballou, 2009; Briggs, 

2013; Domingue, 2014), the choice of a single metric such as 𝑦 can be difficult to justify, making this a 

potential advantage of the HETOP model. While it would be possible to analyze coarsened proficiency 

data with other methods that rely only on ordinal information in the coarsened scores, we believe the 
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HETOP models are particularly useful in this context. Many ordinal statistics focus on making pairwise 

comparisons between distributions and may require adjustments for ties (repeat values), which occur 

frequently in coarsened data. The HETOP models naturally account for repeat values, while the model 

parameters allow one to both make pairwise comparisons between groups and summarize patterns 

across more than two groups. The HETOP model parameters, for example, can be used to estimate 

standardized mean differences or probability-based ordinal effect size measures between pairs of groups 

(Agresti & Kateri, 2017), to estimate intraclass correlation coefficients among groups (Reardon et al., 

2017), or as outcome measures in regression models.  

Problems with the HETOP Model 

 Although the HETOP model works well for recovering the means and standard deviations in the 

𝑦∗ metric when only 𝐍 is observed, a number of problems can occur when attempting to estimate the 

parameters using ML with small samples. First, for some patterns of sampling zeros in 𝐍, finite ML 

estimates may not exist for all groups. Second, even when there may be sufficient information for the ML 

estimates to be defined in theory, computer algorithms may not converge to a solution or may produce 

unstable estimates with extremely poor precision. Such issues are sometimes referred to as fragile 

identification (Freeman et al., 2015; Keane, 1992). Third, in cases where the ML estimates do exist and 

software can identify the estimates, the simulations in Reardon et al. (2017) show that there is negative 

bias and excessive sampling error in standard deviation estimates when group sample sizes are small (less 

than 50) and the cut scores are asymmetrically and/or widely spaced. 

Reardon et al. (2017) considered two possible solutions to these challenges. The first was to fit a 

homoskedastic ordered probit (HOMOP) model that constrains all groups to have a common standard 

deviation. The second was a partially heteroskedastic ordered probit (PHOP) model that estimates a 

single, pooled standard deviation for all groups with sample sizes below a set threshold. The HOMOP 

model makes the potentially unrealistic assumption that all groups have equal standard deviations, 
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precluding the study of heterogeneity of within-group variances. The PHOP model allows for the study of 

heterogeneity among some groups, but entails the arbitrary constraint that a subset of groups (here, 

those with sample sizes below some threshold) have a common standard deviation. 

Lockwood et al. (2018) describe a Bayesian model that addresses these challenges by borrowing 

information from other groups and from covariates. As anticipated, the Bayesian model solves the 

identification and existence problems, and reduces sampling error of standard deviation estimates, but at 

the cost of additional bias and the requirement that analysts define or estimate appropriate prior 

distributions for the latent group parameters.  

In the context of recovering achievement test score distributions for schools, each of these 

approaches borrows information from students in other schools taking the same test in the same year, 

because the models are defined assuming that the coarsened data are from a single test with a common 

set of cut scores. In the next section, we describe a generalized version of the HETOP model that can be 

used to estimate multiple latent distributions for each group simultaneously, even if the distributions are 

for different measures coarsened using different cut scores. Estimating the distributions simultaneously 

allows one to borrow information from students in the same school taking tests in these additional years, 

grades, and subjects. This approach will be preferable, in theory, if borrowing information from the same 

group provides better estimates than borrowing information from other groups. This could occur, for 

example, if there is more variability in the relative magnitude of parameters across schools (within time 

points) than within schools (across time points). This is an empirical question that we investigate in 

Section 2 with a national database of real test score data, where we find evidence that there is greater 

variability in standard deviations across districts than within districts over time. 

The Pooled HETOP Model 

 When analysts have test score proficiency counts from multiple test administrations across years 

or grades for the same 𝐺 groups, it is possible to pool information across administrations, resulting in a 
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more general model that may also improve the estimates of some parameters, such as the estimates of 

𝜎𝑔. To define the model, suppose there are coarsened proficiency counts for a set of 𝐺 schools across 𝑅 

grades. We now assume there is an underlying variable 𝑦∗ that is normally distributed within each school 

𝑔 and grade 𝑟, 

 𝑦𝑔𝑟𝑖
∗ ~𝑁(𝜇𝑔𝑟 , 𝜎𝑔𝑟), ( 5 ) 

and that the observed data, 𝑥𝑔𝑟𝑖 ∈ {1, … , 𝐾𝑟}, consist of ordered proficiency scores that arise from 

coarsening these 𝑦∗ values with grade-specific cut scores such that 

 𝑥𝑔𝑟𝑖 = 𝑘 if 𝑐𝑟(𝑘−1) < 𝑦𝑔𝑟𝑖
∗ ≤ 𝑐𝑟𝑘. ( 6 ) 

The goal is to estimate the school and grade-specific parameters 𝜇𝑔𝑟  and 𝜎𝑔𝑟  for each school in each 

grade simultaneously. 

If we model the mean and standard deviation parameters with parametric functions of grade and 

group, with 𝜇𝑔𝑟 = 𝑓(𝑔, 𝑟) and 𝛾𝑔𝑟 = ln(𝜎𝑔𝑟) = ℎ(𝑔, 𝑟), the model-implied probability of student 𝑖 in 

group 𝑔 scoring in proficiency category 𝑘 in grade 𝑟 can be written as: 

 

𝜋𝑔𝑟𝑘 = Φ (
𝑓(𝑔, 𝑟) − 𝑐𝑟(𝑘−1)

𝑒ℎ(𝑔,𝑟)
) − Φ (

𝑓(𝑔, 𝑟) − 𝑐𝑟𝑘

𝑒ℎ(𝑔,𝑟)
) 

= 𝑃𝑟(𝑐𝑟(𝑘−1) < 𝑦𝑔𝑟𝑖
∗ ≤ 𝑐𝑟𝑘). 

( 7 ) 

Let 𝑛𝑔𝑟𝑘  be the number of students in group 𝑔 scoring in proficiency category 𝑘 in grade 𝑟, and let 𝑛𝑔𝑟 =

Σ𝑘=1
𝐾 𝑛𝑔𝑟𝑘. We can write the log-likelihood of the model in terms of the parameters in 𝑓( ) and ℎ( ) as 

 𝑙(𝐍|𝒇, 𝒉, 𝐂) = 𝐴 + ∑ ∑ ∑ 𝑛𝑔𝑟𝑘 ln (Φ (
𝑓(𝑔, 𝑟) − 𝑐𝑟(𝑘−1)

𝑒ℎ(𝑔,𝑟)
) − Φ (

𝑓(𝑔, 𝑟) − 𝑐𝑟𝑘

𝑒ℎ(𝑔,𝑟)
))

𝐾

𝑘=1

𝑅

𝑟=1

𝐺

𝑔=1

. ( 8 ) 

For now we assume there are the same number of cut scores in each grade level (though they do not 

need to be equal across grades), but it is possible to relax this assumption.2 

 
2 If we restrict consideration to cases where 𝐾 is equal across grades, the three-way 𝐾 × 𝐺 × 𝑅 table could be 
collapsed to a two-way 𝐾 × (𝐺𝑅) table, thus making the model equivalent to the HETOP model described above. 
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To connect with the models above, fitting the HETOP model separately within each grade is 

equivalent to having fully nonparametric functions 𝑓(𝑔, 𝑟) = 𝜇𝑔𝑟 and ℎ(𝑔, 𝑟) = 𝛾𝑔𝑟. Fitting the HOMOP 

model separately within each grade, which constrains all groups in a given grade to have the same 

standard deviation, uses ℎ(𝑔, 𝑟) = 𝛾𝑟. We consider two alternative forms for ℎ( ) that leverage 

information across grades but within groups. First, we define a model that estimates a single scale 

parameter for each group using 

 𝛾𝑔𝑟 = ℎ(𝑔, 𝑟) = 𝛾𝑔 . ( 9 ) 

Because this model estimates a single standard deviation parameter per group that is constant across 

grades, we refer to it as a “fully pooled HETOP model.”  Second, we define a model that estimates the 

scale parameter for each group with a group-specific linear function of grade using 

 𝛾𝑔𝑟 = ℎ(𝑔, 𝑟) = 𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑟. ( 10 ) 

We refer to this as the “linear trend pooled HETOP model.” In Equation (10), 𝛽0𝑔 is a unique scale 

parameter for each group corresponding to the grade level coded as 0, and 𝛽1𝑔 is the rate of change in 

this scale parameter across grade levels. 

Although there may be very little information with which to estimate a group’s mean and 

standard deviation in a single year or grade, these models leverage additional data by pooling across 

multiple grades of data. While the model described here assumes data from multiple grades are available, 

the extension to additional dimensions (e.g., years or subjects) is straightforward. Pooled HETOP models 

can be applied most flexibly when pooling across time (e.g., grades or years) rather than subjects, 

although this will depend on both statistical and substantive considerations as we discuss below. In 

addition, while we focus on using the pooled model to improve small-sample standard deviation 

estimates, the models could be extended to have a functional form for the means or to include additional 

 
However, this is only possible if 𝐾 is equal across all grades and one constrains the locations of the cut scores across 
grades to be equal, neither of which are assumed for the pooled HETOP model in Equations 5 through 8. 
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covariates in the model that represent other group variables (such as school characteristics or aggregate 

student demographic information). We focus on the standard deviations because prior work suggests 

small-sample standard deviation estimates are more problematic than small-sample mean estimates. 

The pooled HETOP models defined here treat the group parameters as fixed effects to be 

estimated individually. The data structure described above can also be conceptualized as a multi-level 

data structure, with repeated observations nested within groups. One could potentially treat the group-

level parameters as random effects, estimating the distributions of random effects and using a second 

step to predict values for specific observations. However, because the tests and cut scores can vary 

across the different levels (i.e., repeated grades or years), the model allows for heteroskedasticity, and 

individual-level data are not available, estimating these models would likely not be possible using 

standard ordered mixed effects regression models. The Bayesian HETOP model described in Lockwood et 

al. (2018), for example, treats the group parameters as random variables, but was developed under the 

assumption that a single, common set of cut scores was used to coarsen all observed scores. Lockwood et 

al. discuss additional considerations when selecting between models that treat group parameters as fixed 

(i.e., directly estimated) or random effects.  

Pooled HETOP Model Identification 

Because the latent 𝑦∗ metric is unobserved and indeterminate, constraints are needed to identify 

the scale of the estimates. In the standard HETOP model for a single grade, for example, two constraints 

are needed: one constraint to set the location of the latent 𝑦∗ metric and one to define the scale of the 

𝑦∗ metric. To generalize this for the pooled HETOP models, let 𝑃𝑚  be the number of parameters used per 

group to model the means, 𝑃𝑠  be the number of parameters used per group to model the standard 

deviations, and 𝐾 be the number of categories per grade (again assuming an equal number of cut scores 

in each grade, and assuming that 𝐾 ≥ 3 in each grade). In total the model defines 𝐺(𝑃𝑚 + 𝑃𝑠) +

𝑅(𝐾 − 1) total parameters, and requires at least 𝑃𝑚 + 𝑃𝑠 constraints on these parameters to set the 
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location and the scale of 𝑦∗. The fully pooled HETOP model, for example, uses 𝑅 parameters per group to 

model the means (i.e., a separate mean estimated in each grade), but only one additional parameter per 

group for the standard deviations, and thus requires 𝑅 + 1 constraints; 𝑅 constraints to define the 

location for each grade, and one additional constraint to set the scale of the standard deviation 

parameters. The linear trend pooled HETOP model requires 𝑅 + 2 constraints. Fitting the HETOP model 

separately within each grade requires 2𝑅 constraints, to set the location and scale of the estimates in 

each grade. 

 There are different ways to select constraints that satisfy these requirements and that result in 

statistically equivalent models, where parameters will be linear transformations of one another and the 

model log-likelihoods will be equal. One possibility, for example, would be to fix the first cut score in each 

grade level to a fixed value (e.g., to 0) and then constrain the second cut score for 𝑃𝑠  of the grade levels to 

another fixed value (e.g., to 1). In the linear trend pooled HETOP model, another option is to constrain 

the weighted sum of group means to be 0 within each grade, and constrain the weighted sum of the 𝛽0𝑔 

and 𝛽1𝑔 parameters to be 0 across groups. 

These constraints assume that ML estimates exist for each relevant parameter. Certain patterns 

of sampling zeroes can prevent finite ML estimates from existing for some samples, even when the model 

specifications and data structure (e.g., number of grades, number of categories, and number of 

constraints) should, in theory, support model estimation. For example, if all observations in a single group 

are in the highest or lowest category in a given grade, a finite ML estimate will not exist for this group 

mean and hence for the model overall, despite having a sufficient number of grades, categories, and 

constraints to identify the model as described above. This problem arises due to patterns in some 

samples of data rather than due to the specification of the model. In the simulation section we describe 

an adjustment that can be made to sampled frequency counts to ensure the existence of finite ML 

estimates for all samples. Placing additional structure on the model, for example by modeling the group 
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means with a linear trend in 𝑓( ), is another potential option for overcoming problems caused by 

sparseness. 

Pooled HETOP Model Assumptions and Standardization 

The HETOP model assumes that the test score distributions are respectively normal and were 

coarsened with common cut scores within grades, years, and subjects. The fully pooled and linear trend 

pooled HETOP models place additional constraints on the relative magnitude of group standard 

deviations, which imply assumptions about the overall structure of group standard deviation parameters. 

To aid with the interpretation of results, once estimates of �̂�𝑔𝑟 and �̂�𝑔𝑟 = exp(�̂�𝑔𝑟) have been obtained 

subject to necessary identification constraints, the estimates can be linearly transformed to a 

standardized within-grade metric in which the overall distribution of 𝑦∗ has a marginal mean of 0 and a 

marginal standard deviation of 1 within each grade. Parameter estimates and standard errors on the 

within-grade standardized metric can be obtained by applying the formulas described in the Appendix of 

Reardon et al. (2017) to estimates from each grade separately. Letting �̂�𝑔𝑟
′  and ln(�̂�𝑔𝑟

′ ) = �̂�𝑔𝑟
′  be the 

parameter estimates after standardizing within grades, standardization leads to the following 

relationships: 

 
�̂�𝑔𝑟

′ =
�̂�𝑔𝑟 − 𝜉𝑟

exp(Γ𝑟)
 

ln(�̂�𝑔𝑟
′ ) = �̂�𝑔𝑟

′ = �̂�𝑔𝑟 − Γr, 

( 11 ) 

where 𝜉𝑟  is an estimate of the overall mean in grade 𝑟, and exp(Γ𝑟) is an estimate of the overall standard 

deviation in grade 𝑟, in the metric defined by the constraints used for identification. 

Standardizing estimates within grades makes the assumptions of the pooled HETOP models 

slightly less restrictive. In the fully pooled HETOP model, for example, 𝛾𝑔𝑟 = 𝛾𝑔 is constant across grades, 

but this implies only that for a fixed pair of grades, 𝑟1 and 𝑟2, the ratio of any single group’s standard 
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deviations in the standardized metric will be constant, not that the standard deviations will be equal in 

absolute value. That is, the fully pooled HETOP model implies that 

 
𝜎𝑔𝑟1

′

𝜎𝑔𝑟2
′ =

exp(𝛾𝑔 − Γ𝑟1
)

exp(𝛾𝑔 − Γ𝑟2
)

= exp(Γ𝑟2
− Γ𝑟1

) ( 12 ) 

will be constant across all schools (𝑔) for a fixed pair of grades 𝑟1 and 𝑟2. The model also implies that the 

ratio of standard deviations for any pair of groups 𝑔1 and 𝑔2 will be constant across grades, meaning that 

𝜎𝑔1𝑟
′ /𝜎𝑔2𝑟

′  will be constant for any choice of 𝑟. This implies that the rank ordering of group standard 

deviations remains constant across grades in the pooled model. 

The linear trend pooled HETOP model instead implies that the ratio of any single group’s 

(standardized) standard deviations across a pair of grades will depend on the group’s slope, distance of 

the grades, and grade-specific standardization constants: 

 

𝜎𝑔𝑟1
′

𝜎𝑔𝑟2
′ =

exp(𝛾𝑔𝑟1
− Γ𝑟1

)

exp(𝛾𝑔𝑟2
− Γ𝑟2

)
=

exp(𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑟1 − Γ𝑟1
)

exp(𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑟2 − Γ𝑟2
)

 

= exp (𝛽1𝑔(𝑟1 − 𝑟2) + (Γ𝑟2
− Γ𝑟1

)). 

( 13 ) 

Likewise, the ratio of standard deviations for any pair of groups changes by a common factor across 

grades: 

 
𝜎𝑔1𝑟

′

𝜎𝑔2𝑟
′ =

exp(𝛽0𝑔1
+ 𝛽1𝑔1

∗ 𝑟 − Γ𝑟)

exp(𝛽0𝑔2
+ 𝛽1𝑔2

∗ 𝑟 − Γ𝑟)
= exp([𝛽0𝑔1

− 𝛽0𝑔2
] + [𝛽1𝑔1

− 𝛽1𝑔2
] ∗ 𝑟). ( 14 ) 

Thus, the linear trend pooled HETOP model does not require that the rank ordering of group standard 

deviations remains constant across grades. 

We have described the assumptions of the pooled HETOP models when pooling across grades 

here. The same assumptions would apply to other dimensions as well. If the model were used to pool 

across years, for example, the assumptions would apply to the relative magnitudes of group standard 

deviations across years; if the model were used to pool across subjects, the assumptions would apply to 

the relative magnitudes of group standard deviations across subjects. In addition to the statistical 
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assumptions described here, one must also consider whether it makes sense substantively to pool across 

dimensions, something we discuss further below. In the next section we evaluate the plausibility of these 

assumptions about the relative magnitudes of group standard deviations within subjects across grades 

and years in an empirical dataset. 

2. Empirical Test of Pooled Model Assumptions 

This section analyzes district-level test score proficiency data from 40 states to evaluate whether 

there is evidence that the patterns among relative magnitudes of district-level standard deviations are 

consistent with the assumptions made by the pooled HETOP models introduced above. We use publicly 

available data from the Stanford Education Data Archive version 2.1 (SEDA; Reardon et al., 2018). SEDA 

contains estimated mathematics and English/Language Arts (ELA) grade 3-8 test score means and 

standard deviations for nearly every US public school district in the 2008-09 through 2014-15 school 

years.  

The means and standard deviations in SEDA are estimated by fitting partially constrained HETOP 

models separately in each state, grade, year and subject using aggregate district-level proficiency counts 

obtained from the EDFacts database (Fahle et al., 2018). Because our goal is to study variation among 

group standard deviations, we exclude standard deviation estimates that were constrained during 

estimation, and focus only on freely estimated standard deviations. The exact sample restrictions are 

described in the Appendix. The final sample consists of 620,588 unique standard deviation estimates 

across 40 states and 9,266 unique districts. Each district has between 1 and 42 repeated observations 

(across six grades and seven years) in each subject, with an average of approximately 34 observations per 

district-subject. On average there are 231 districts per subject and state, ranging from 54 to 699.  

Models 

 SEDA contains estimates of 𝜎𝑔𝑟𝑡
′  with an associated standard error for each district 𝑔 in grade 𝑟 

and year 𝑡 in each state and subject. These estimates are on a standardized metric such that within each 
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state, subject, grade, and year, the weighted sum of the means is 0 and the total student-level variance is 

equal to 1. If the assumptions about the relative magnitudes of standard deviations for the fully pooled or 

trend models are met for a particular state by subject dataset, then the natural log of the standardized 

values should be related to the 𝛾𝑔𝑟𝑡 values that would be obtained by fitting a fully pooled or trend 

HETOP model as 

 ln(𝜎𝑔𝑟𝑡
′ ) = 𝛾𝑔𝑟𝑡

′ = 𝛾𝑔𝑟𝑡 + Γ𝑟𝑡 = 𝛽0𝑔 + 𝛽1𝑔𝑟 + 𝛽2𝑔𝑡 + Γ𝑟𝑡 . ( 15 ) 

This implies that if the fully pooled or trend HETOP model assumptions are valid, the 𝛾𝑔𝑟𝑡
′  parameters 

should follow a linear function of grade and year, net of grade-year specific fixed effects Γ𝑟𝑡. In the case of 

the fully pooled HETOP model with constant 𝛾𝑔 parameters, 𝛽1𝑔 = 𝛽2𝑔 = 0 for all groups, and the 𝛾𝑔𝑟𝑡
′  

parameters would be a group-specific constant plus a grade-year specific fixed effect. 

We fit two precision-weighted hierarchical linear models (HLM; Raudenbush & Bryk, 2002) for 

each state-subject dataset, with estimates �̂�𝑔𝑟𝑡
′ = ln(�̂�𝑔𝑟𝑡

′ ) as outcomes. The first model includes grade-

year fixed effects and a random intercept for each district, and represents the structure assumed by the 

fully pooled HETOP model in each state-subject dataset. The second model includes grade-year fixed 

effects as well as random intercepts, grade trends, and year trends for each district, and represents the 

structure assumed by the linear trend HETOP model with both year and grade trends for each district. 

These models are used to study two important patterns in the data. First, we use results from Model 1 to 

estimate the proportion of variance in 𝛾𝑔𝑟𝑡  values that is between rather than within districts. If there is 

more variability between than within districts (net of grade and year fixed effects), this suggests that 

pooled or trend HETOP models are likely to be preferable to models that place constraints across districts. 

Second, we test whether adding grade and year trends in Model 2 explains a statistically and practically 

significant amount of the within-district variability of 𝛾𝑔𝑟𝑡  values. If the grade and year trends explain a 

substantial proportion of within-district variability, it suggests that the trend HETOP model will be 

preferable to the fully pooled HETOP model. 
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Results 

 Across the 80 state-subject datasets, in Model 1 on average 65% of the total variance in 𝛾𝑔𝑟𝑡  

values in ELA (range 41% to 88%) and 64% in Math (range 43% to 89%) was between rather than within 

districts. The ratio was less than 50% in only 7 of the 80 models. This suggests that in nearly all cases the 

fully pooled HETOP model that places constraints within districts (across years and grades) would be 

preferable to the HOMOP model that places constraints across districts (within years and grades). In 

Model 2, the variance of year and grade trends was statistically significant in all but 1 of the 80 state-

subject datasets, suggesting that a linear trend pooled HETOP model with district-specific grade and year 

trends would be preferable to a fully pooled model without these trends. Adding the grade and year 

trends reduced the unexplained within-district variability in 𝛾𝑔𝑟𝑡  values by approximately 35% for ELA and 

29% for Math, on average, relative to the fully pooled HETOP model. This suggests that including district-

specific linear trends explains a substantial proportion of variability that is not explained by the fully 

pooled HETOP model. 

We can also use the magnitude of the estimated variance components to quantify the anticipated 

gains in accuracy obtained by fitting one of the pooled HETOP models relative to a HOMOP model. Based 

on the magnitude of the estimated variance components across models, we would expect HOMOP 

standard deviation estimates to be within approximately ±14% of the true 𝛾𝑔𝑟𝑡  values in ELA and ±17% in 

Math. Similar calculations suggest that on average estimates should be within approximately ±8% in ELA 

or ±10% in Math when using the fully pooled HETOP model, and within ±7% in ELA or ±9% in Math when 

using the linear trend pooled HETOP model. These results indicate that when placing constraints on 

standard deviation estimates within subjects, the linear trend pooled HETOP model should generally 

produce more accurate estimates of 𝛾𝑔𝑟𝑡  than either the fully pooled HETOP model or HOMOP model. In 

the next section we use a computer simulation to evaluate model performance under known conditions. 
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3. Simulation 

A Monte Carlo computer simulation was used to investigate the small (i.e., finite) sample 

performance of the fully pooled HETOP model and the linear trend pooled HETOP model (referred to in 

this section as the “trend HETOP” model) relative to the standard HETOP and HOMOP models when 

pooling data across repeated observations. Data were generated for a set of 25 groups observed across 

six occasions. This scenario could represent having data for 25 schools across six grades, and hence we 

refer to the occasions as “grades.” The simulation varied the true group standard deviation structure 

(either constant values or following group-specific linear trends across grades), group sample size (sizes of 

10, 25, 50, 100, or 200), and cut score locations. The cut scores used to coarsen the data were placed at 

either the 20th/50th/80th (mid), 5th/30th/55th (skewed) or 5th/50th/95th (wide) percentiles of the overall 

distribution within each grade, or were mixed such that scores in the first three grades were coarsened 

using the mid, skewed, and wide cut scores, respectively, with the same pattern for grades four through 

six. Overall there were (2 group structures) x (5 sample size conditions) x (4 cut score conditions) for a 

total of 40 simulation conditions. We generated and analyzed 1000 replications (i.e., samples) in each 

condition. All simulations and analyses were carried out using Stata 14.2 (StataCorp, 2015), with 

estimation of the HETOP models conducted using a custom program written by the authors and based on 

the Stata -ml- functions. All simulation code is available upon request from the authors. 

Data Generation 

For each group standard deviation structure by sample size condition we began by defining a 

population of 25 groups with fixed mean and standard deviation parameters at each grade level. Defining 

the true group mean and standard deviation parameters began by creating a 5-by-5 grid of 𝛽0𝑔 and 𝛽1𝑔 

values, where the log standard deviation for group 𝑔 in grade 𝑟 = {0,1, … ,5} is 𝛾𝑔𝑟: 

 𝛾𝑔𝑟 = 𝛽0𝑔 + 𝛽1𝑔 ∗ 𝑟. ( 16 ) 



 21 

To determine the true values, we first assigned values of 𝜎𝑔 equal to 0.75, 0.85, 0.95, 1.05 or 1.15 to each 

group, and defined 𝛽0𝑔 = ln(𝜎𝑔). These values were then re-centered such that Σ𝑔𝛽0𝑔 = 0. In the 

constant standard deviation condition, 𝛽1𝑔 = 0 for all groups. In the linear trend condition, a grid with all 

possible combinations of the five 𝛽0𝑔 values and the five 𝛽1𝑔 values {−0.10, −0.05, 0.0, 0.05, 0.10} was 

defined. These values are more extreme than the linear trends found in the national district-level data 

analyzed above, but were similar to those found in the school-level example below and are used in the 

simulation to evaluate model performance across a broader range of conditions that might be 

encountered in practice. The mean for each group was randomly sampled (with replacement) from the 

values {−0.6, −0.3, 0.0, 0.3,0.6} within each grade. These group means and standard deviations were 

standardized within each grade so that the marginal mean and standard deviation in each grade were 0 

and 1, respectively. The standardized values were used to generate the random samples for each group in 

each grade, and are the target of recovery. 

The standardized 𝜎𝑔𝑟  and 𝜇𝑔𝑟  values varied across grades based on the random assignment of 

group mean values, but produce approximately grid-like structures of group means and standard 

deviations within each grade of data in the standardized metric. The intraclass correlation coefficient 

(ICC) also depends on the randomly selected group parameters, and ranged from 0.1 to 0.18 (mean 0.14) 

within grades. The coefficient of variation (CV) among standardized group 𝜎𝑔 values ranged from 

approximately 0.15 to 0.39 (mean 0.20) across conditions. These values are similar to those found in prior 

analyses with real test score data (e.g., Fahle & Reardon, 2018; Hedges & Hedberg, 2007). In each 

replication of each sample size and standard deviation condition, a normally distributed random sample 

of size 𝑛 (either 10, 25, 50, 100, or 200) was generated from each group for each of the grades and was 

coarsened using each set of cut scores (mid, skewed, wide, or mixed). 
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Parameter Estimation 

For each of the four coarsened datasets in each condition, we fit the HETOP and HOMOP models 

separately within each grade and fit the fully pooled and trend HETOP models simultaneously to all 

grades. The fully pooled HETOP model was expected to perform best when the data generating model 

specified constant 𝛾𝑔 values across grades, while the trend HETOP model was anticipated to perform best 

in the linear trend condition. The HETOP model fit separately in each grade is correctly specified given the 

data generation process, but is less parsimonious than the fully pooled or trend models. The HOMOP 

model is incorrectly specified in all conditions. Although we anticipate the separate HETOP and HOMOP 

models will suffer from some of the problems described above, we include them in the simulation to 

compare their relative performance to that of the pooled and trend HETOP models.  

We used the following procedure to ensure finite ML estimates exist for all samples. When a 

sampled count vector had only one non-zero count, had non-zero counts in only the top and bottom 

categories, or had non-zero counts in only two adjacent categories, we replaced the sampled counts for 

that group with 

 �̂�𝑔𝑟𝑘 = 𝑛𝑔𝑟 ∗
𝑛𝑔𝑟𝑘 + 𝛼

𝑛𝑔𝑟 + 𝐾 ∗ 𝛼
, ( 17 ) 

where 𝑛𝑔𝑟 = 𝛴𝑘=1
𝐾 𝑛𝑔𝑟𝑘 is the total group sample size for group 𝑔 in grade 𝑟 and 𝛼 =

1

𝐾
=

1

4
. This process 

has been referred to as “flattening” (Fienberg & Holland, 1972) or “smoothing” (Simonoff, 1995) the 

observed frequency counts. The degree of smoothing depends upon the choice of 𝛼 and the resulting 

proportions in each cell tend to get flattened towards a uniform distribution. The use of 𝛼 =
1

𝐾
 was 

suggested by Perks (1947). This method is similar to the common technique of adding a small constant 

(often 0.5) to cells in sparse contingency tables (Agresti, 2013), but it has the desirable property that it 

leaves the total sample size for each group unaltered. 
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Outcomes 

 Evaluation of model performance is based on four outcomes. First, the convergence rate for each 

model was recorded, indicating whether the ML algorithm could reach a solution. We then evaluated the 

bias, root mean squared error (RMSE) and confidence interval (CI) coverage for the estimated group 

means and standard deviations (in the within-grade standardized metric). The bias, RMSE, and CI 

coverage was aggregated across all groups and grades for a particular condition (i.e., it is the average bias 

or pooled RMSE across groups and grades for a given condition). The CI coverage was evaluated by 

determining the proportion of individual estimates for which the estimated parameter value was within 

+/- 1.96 estimated standard errors of the true parameter value. 

 To compare the relative gain in efficiency when using a fully pooled HETOP model rather than 

separate HETOP models in each grade, we conducted one additional analysis. For each replication in the 

equal standard deviation condition, we fit a fully pooled model using only the first two, three, four, or five 

grades of data, in addition to the model using all six grades. We then compared the empirical sampling 

variance of the group standard deviation estimates in these pooled models relative to the separate 

HETOP models fit within each grade. The efficiency ratio between the fully pooled and separate HETOP 

models was defined as the ratio of the average observed sampling variance in the separate HETOP 

models relative to each of the fully pooled HETOP models, computed as: 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =
∑ 𝑉𝑎𝑟(�̂�𝑔,𝐻𝐸𝑇𝑂𝑃)𝐺

𝑔=1

∑ 𝑉𝑎𝑟(�̂�𝑔,𝑝𝑜𝑜𝑙𝑒𝑑)𝐺
𝑔=1

. ( 18 ) 

This ratio indicates how much smaller the sampling error would be if the group standard deviations 

remain constant and we pool across either two, three, four, five, or six grades rather than using only a 

single grade to estimate standard deviations. A ratio of 1 indicates that sampling error in the separate and 

pooled models are equal, ratios greater than 1 indicate the separate HETOP model estimates have larger 

sampling error, and ratios less than 1 indicate the pooled model has larger sampling error. A similar 
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calculation was also made to compare the efficiency of the trend pooled HETOP model to the separate 

HETOP models. 

Results 

All models converged successfully. Table 1 summarizes the proportion of count vectors that were 

smoothed across simulation conditions. Across all conditions, approximately 6% of all sampled vectors 

were smoothed, and these were primarily concentrated in the wide and mixed cut score conditions with 

small sample sizes. In the wide cut score condition with n=10, for example, approximately 43% of vectors 

were smoothed, while in the mixed cut score condition with n=10 approximately 20% were smoothed. 

While smoothing the count vectors ensures existence of ML estimates, it may also lead to positive bias in 

standard deviation estimates by artificially adding variance to the observed count vectors, something we 

discuss below. 

Table 1. Proportion of Smoothed Count Vectors Across Simulation Conditions. 

  N=10 N=25 N=50 N=100 N=200 

Cut Scores Equal Trend Equal Trend Equal Trend Equal Trend Equal Trend 

Mid 0.035 0.057 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 

Mixed 0.182 0.218 0.054 0.097 0.012 0.053 0.003 0.028 0.000 0.022 

Skewed 0.107 0.137 0.013 0.030 0.003 0.005 0.000 0.001 0.000 0.000 

Wide 0.412 0.455 0.139 0.224 0.040 0.116 0.007 0.058 0.000 0.040 

 

 Group Means. We do not show detailed results for the estimated means here because these 

were not the primary outcome of interest, and because there was little variation in the results across 

models. Average bias in estimated means was indistinguishable from 0 for all conditions. There was very 

little difference in the RMSE of means across models, and sample size was the primary factor influencing 

this outcome. CI coverage was generally good and converged towards the expected rate (95%) as sample 

sizes increased, with the following exceptions: coverage rates became too low for the HOMOP model as 
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sample sizes increased, and with skewed cut scores rates were as low as 90% for the separate HETOP 

models with n=10 and for the pooled HETOP model with n=200 in the trend SD condition. 

Group Standard Deviations. Figures 1 and 2 display the bias and RMSE for estimated standard 

deviations. Each panel displays results for a single cut score by group standard deviation structure 

condition; the x-axis depicts group sample sizes, the y-axis depicts the outcome of interest, and each line 

represents a different model. With n=10 and n=25 there was a reduction in bias for the fully pooled and 

linear trend models relative to the separate HETOP models. An exception was the wide cut score 

condition, in which all models slightly overestimated group standard deviations, on average, with very 

small sample sizes; as noted above this is likely due to the correction factor applied to ensure ML 

existence, which was applied most often in the wide cut score condition. The fully pooled and trend 

models tended to slightly overestimate standard deviation estimates with samples of size n=10, but this 

bias was smaller in magnitude than the negative bias in the separate HETOP model estimates and was 

reduced to near 0 with samples of size 25 or larger. The separate HOMOP models produced a small 

positive bias on average across nearly all conditions, which was larger when there were true trends in the 

standard deviations. This indicates that the single common standard deviation estimated in the HOMOP 

model was slightly larger than the true average within-group standard deviations, and is likely due to the 

misspecification of the HOMOP model. 
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Figure 1. Bias in Estimated Standard Deviations by Standard Deviation Structure, Cut Score Type, and 
Sample Size for Each Model. HETOP=heteroskedastic ordered probit model; HOMOP=homoskedastic 
ordered probit model; Pooled=fully pooled HETOP model; Trend=linear trend pooled HETOP model. 
Constant SD and Trend SD refer to different patterns of true group standard deviations described in text. 
The mid, skewed, wide, and mixed headings refer to different cut score locations; mid=symmetric cut 
scores at approximately the 20/50/80 percentiles; skewed=asymmetric cut scores at approximately the 
5/30/55 percentiles; wide=symmetric cut scores at approximately the 5/50/95 percentiles; mixed=mix of 
mid/skewed/wide cut score locations across grades. 
 

Figure 2, depicting the RMSEs of the estimated standard deviations, is simpler to summarize. The 

separate HETOP models had the largest RMSEs when 𝑛 ≤ 25 across all conditions, except when there 

were true trends in the standard deviations, where the separate HOMOP models sometimes had the 

largest RMSE when 𝑛 = 25. The difference was substantial for all conditions except the wide cut score 

condition; again the correction factor used for existence appears to have caused this difference. The 

separate HOMOP models had constant RMSE across different sample size conditions, with similar RMSE 

to the fully pooled model when 𝑛 = 10, but larger RMSE than all other models when group sample sizes 

were greater than 50. In the constant SD conditions, the fully pooled HETOP model had the lowest RMSEs 

in all but the skewed cut score condition, where the separate HOMOP models had slightly lower RMSE 
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when 𝑛 = 10. While the fully pooled model RMSEs were only slightly lower than the trend model RMSEs, 

they were substantially smaller than the RMSEs for the separate HETOP models in all but the largest 

sample size conditions. In the trend SD conditions, the trend HETOP model had the lowest RMSEs in all 

conditions except when 𝑛 = 10 with mid or mixed cut scores, when the pooled HETOP model had slightly 

smaller RMSEs. These results were anticipated; the pooled HETOP model is correctly specified (and most 

parsimonious) in the constant SD conditions, but is mis-specified in the trend SD conditions. In additional 

simulations using smaller trends in standard deviations (not reported), the pooled HETOP model often 

had lower RMSEs than the linear trend HETOP model, suggesting that whether the pooled or trend 

HETOP model achieves lower RMSEs will depend in part on the magnitude of the standard deviation 

trends. 

 
Figure 2. RMSE of Estimated Standard Deviations by Standard Deviation Structure, Cut Score Type, and 
Sample Size for Each Model. HETOP=heteroskedastic ordered probit model; HOMOP=homoskedastic 
ordered probit model; Pooled=fully pooled HETOP model; Trend=linear trend pooled HETOP model. 
Constant SD and Trend SD refer to different patterns of true group standard deviations described in text. 
The mid, skewed, wide, and mixed headings refer to different cut score locations; mid=symmetric cut 
scores at approximately the 20/50/80 percentiles; skewed=asymmetric cut scores at approximately the 
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5/30/55 percentiles; wide=symmetric cut scores at approximately the 5/50/95 percentiles; mixed=mix of 
mid/skewed/wide cut score locations across grades. 
  

The CI coverage rates (not presented graphically) followed anticipated patterns. For the separate 

HETOP models, coverage rates were between 92.5% and 97.5% for all conditions when 𝑛 ≥ 100, and 

were too low in small sample size conditions (as low as 86% when n=10) except in the wide cut score 

condition where they were too high (99% when n=10), likely due to the smoothing correction. For the 

trend HETOP model, coverage rates were between 92.5% and 97.5% for all conditions except the wide 

cut score, constant standard deviation condition when n=10, where they were also too high. The trend 

HETOP model coverage rates were always more accurate than the separate HETOP coverage rates, 

except in the wide cut score condition where there were minor differences. For the fully pooled HETOP 

model, coverage rates were similar to the trend model for the constant SD condition, but became 

substantially less accurate in the trend SD condition as sample sizes increased due to the model mis-

specification. Coverage rates for the HOMOP model were too low across all conditions due to model mis-

specification (never higher than 25% in any condition) and were less accurate with larger sample sizes.  

 Figure 3 displays the efficiency ratio of the separate HETOP models relative to the pooled models 

when pooling across varying numbers of grades. Each panel represents a different cut score condition, 

and each line represents the efficiency ratio when pooling across a different number of grades. When 

using only 1 grade, the fully pooled model is equivalent to the separate HETOP models, indicated by the 

efficiency ratio of 1. In general, the efficiency ratios approach a value of 𝑝, the number of datasets being 

pooled, indicating that the mean squared error (MSE) of estimates using the fully pooled model is 

approximately 1/𝑝 times the MSE using the separate HETOP models, a substantial reduction. 
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Figure 3. Efficiency Ratios between HETOP and Pooled HETOP Models by Cut Score Type, Sample Size, and 
Number of Pooled Grades in the Constant SD Condition. The “p” refers to the number of grades used to 
estimate the fully pooled HETOP model. The mid, skewed, wide, and mixed headings refer to different cut 
score locations; mid=symmetric cut scores at approximately the 20/50/80 percentiles; 
skewed=asymmetric cut scores at approximately the 5/30/55 percentiles; wide=symmetric cut scores at 
approximately the 5/50/95 percentiles; mixed=mix of mid/skewed/wide cut score locations across grades. 
 

Figure 4 plots the observed efficiency ratios of the trend model estimates relative to the separate 

HETOP model estimates for the trend SD condition. Each panel represents a different cut score condition, 

and each line plots the efficiency ratio at a single grade level. The trend model has the greatest gains in 

efficiency for the middle grades (2 and 3), and the smallest efficiency gains for the extreme grades (0 and 

5), in all but the mixed cut score condition (which we discuss below). This result is expected because the 

standard deviations are effectively predictions from a linear regression model, and regression predictions 

near the center of the predictor distribution will have smaller variance than predictions at the extremes. 

The estimated (or predicted) scale parameter in the trend model is �̂�𝑔𝑟 = �̂�0𝑔 + �̂�1𝑔𝑟, where 𝑟 is the 

grade level. In least squares (LS) regression, the sampling variance of the prediction is (Casella & Berger, 

2002, pp. 557–558): 

 𝑉𝑎𝑟(�̂�0𝑔 + �̂�1𝑔𝑟) =
𝜎2

𝑛
(1 +

(𝑟 − �̅�)2

𝑉𝑎𝑟(𝑟)
), ( 19 ) 
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where 𝜎2 is the residual error variance, 𝑛 is the number of observations, �̅� is the mean of 𝑟, and 𝑉𝑎𝑟(𝑟) 

is the variance of 𝑟. The sampling error in LS thus depends on the specific value of 𝑟 being considered – it 

will be 𝜎2/𝑛 at the mean of 𝑟 and become larger as 𝑟 gets further from the mean of 𝑟. If we assume that 

the sampling variance of the scale parameter estimates using the separate HETOP models represents 𝜎2, 

and the sampling variance of the trend model estimates can be approximated by the LS result in Equation 

(19), then the anticipated efficiency ratio of the trend model estimates for a model with 𝑝 = 6 grades 

coded as 𝑟 = 0,1, … ,5 would be approximately 1.91 (for 𝑟 = 0 and 5), 3.39 (for 𝑟 = 1 and 4), and 5.53 

(for 𝑟 = 2 and 3). The dashed horizontal lines in Figure 4 depict these anticipated efficiency ratios. 

 
Figure 4. Efficiency Ratios between HETOP and Trend Pooled HETOP Models by Cut Score Type, Sample 
Size, and Grade in the Trend SD Condition. The “g” represents each of the six possible grade levels. The 
mid, skewed, wide, and mixed headings refer to different cut score locations; mid=symmetric cut scores 
at approximately the 20/50/80 percentiles; skewed=asymmetric cut scores at approximately the 5/30/55 
percentiles; wide=symmetric cut scores at approximately the 5/50/95 percentiles; mixed=mix of 
mid/skewed/wide cut score locations across grades. The mixed cut score condition used mid cut scores 
for grades 0 and 3, skewed cut scores for grades 1 and 4, and wide cut scores for grades 2 and 5. 
 

The approximations appear to work well for the mid, wide, and skewed cut score conditions, but 

are less accurate for the mixed cut score conditions. In the mixed cut score conditions the sampling 

variance of the separate HETOP estimates varies across grade levels depending upon the distribution of 

the cut scores, resulting in the equivalent of a heteroskedastic error term. These results suggest that the 
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efficiency ratio of the trend model relative to separate HETOP models can be approximated using results 

from standard LS regression. When cut score locations vary substantially across grade levels the 

approximations may be less accurate, but substantial gains in efficiency remain. Hence, although the 

trend estimates are more efficient than the separate HETOP estimates, the gain in efficiency depends on 

factors such as the number and coding of the grades and the cut score locations. 

Summary. These results suggest that when data for repeated test administrations are available, 

the fully pooled and trend HETOP models can substantially reduce bias and sampling error of standard 

deviation estimates relative to fitting separate HETOP models, particularly with very small sample sizes. 

The reduction in bias is smaller with larger samples or more equally spaced cut scores, but gains in 

efficiency remain across conditions. The fully pooled and trend models also had smaller sampling variance 

than the separate HOMOP models across nearly all conditions. Use of the smoothing correction did 

appear to induce some positive bias in standard deviation estimates, as anticipated. The results illustrate 

that the relative performance of the models depends on many factors, including the number of waves 

(grades) of data available, group sample sizes, cut score locations, and the true values of the standard 

deviations. In the next section we illustrate how analysts might go about selecting and estimating a 

pooled HETOP model with real data. 

4. Real Data Example 

Determining whether to use the fully pooled, linear trend, HOMOP or full HETOP model depends 

on a number of factors, including the type of data available, group sample sizes, location of the cut 

scores, average values of 𝜎𝑔𝑟
′ , and the true structure of the 𝜎𝑔𝑟

′  values. If all group sample sizes are large, 

full HETOP models that estimate a unique standard deviation for each group will likely be preferred. 

Often, however, the choice for estimating parameters of small groups will be either a model placing 

constraints across groups (e.g., a HOMOP model) or a model placing constraints within groups (e.g., a 

pooled HETOP model). If data are only available from a single measure or time point, then between-group 
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constraints are the only option. When data are available from multiple measures or waves, the choice of 

model will depend on a combination of statistical and substantive factors. In this section we use a single 

year of publicly reported coarsened proficiency data from a statewide mathematics assessment 

administered in grades 3-8 to illustrate how analysts might go about selecting a pooled HETOP model in 

practice. Here we will consider models that pool information from students taking mathematics tests in 

the same school and year across different grades. 

The data contain coarsened proficiency counts for 124 schools that enrolled at least 16 students 

in each grade (data for schools with smaller sample sizes were not reported publicly), resulting in 124 ∗

6 = 744 school-grade cells. There are 𝐾 = 4 proficiency categories in each grade, but the tests and cut 

scores vary across grades; the 3rd grade cut scores (approximately 7th/26th/65th percentiles) are similar to 

the skewed cut score simulation condition, while the 8th grade cut scores (approximately 19th/47th/75th 

percentiles) are more similar to the mid cut score condition. The goal is to estimate the mean and 

standard deviation of math achievement scores within each school-grade cell from the coarsened 

proficiency data. The within-grade sample sizes range from 16 to 310 (mean=67.9, median=58), 

suggesting that small sample bias and sampling error could be a concern for a large proportion of school-

grade cells. There are also eight school-grade cells that do not have sufficient data to estimate both a 

mean and standard deviation without pooling or additional constraints. 

The analyses of national district-level data above suggest that, a priori, when test score data are 

available across multiple grades, we would expect a linear trend HETOP model with linear grade trends to 

be optimal. We also use statistical criteria to select a HETOP model for this particular dataset. To do so, 

we fit a series of nested HETOP models that can be compared with likelihood ratio tests. Model 1 

estimates a unique mean for each school in each grade while constraining the log standard deviation to 

be equal across schools within grades, and is equivalent to estimating a separate HOMOP model in each 

grade. Model 1 is identified by constraining the weighted sum of the means to be 0 within grades, and 
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constraining the common scale parameter, ln(𝜎𝑟) = 𝛾𝑟 , to be 0 in all grades. Model 2 is the fully pooled 

HETOP model introduced above that estimates a unique mean for each school in each grade and a single 

log standard deviation parameter for each school, pooled across grades. Model 2 is identified by 

constraining the weighted sum of the means to be 0 within grades and the weighted sum of the school-

specific log standard deviations to be 0 across schools. Finally, Model 3 is the linear trend pooled HETOP 

model that estimates a unique mean for each school in each grade and a pooled log standard deviation 

with a linear grade trend for each school. Model 3 is identified by constraining the weighted sum of the 

means within each grade to be 0, and constraining both the weighted sum of the intercepts and the 

weighted sum of the linear trends to be 0. All three models allow the cut score locations to vary across 

grades.3 

Table 2 summarizes the results across all three models. First, to determine whether between or 

within-school constraints on the log standard deviations are preferable for these data, we compare the fit 

of Models 1 and 2. A likelihood ratio test at 𝛼 = 0.01 suggests that Model 2 provides a statistically better 

fit to the data (𝜒2 = 481.11, 𝑑𝑓 = 123, 𝑝 < 0.001), indicating that constraints within schools (across 

grades) are preferable to constraints across schools (within grades). Substantively, this suggests that the 

relative variability in student performance tends to be more similar for students in different grades of the 

same school than it is for students across different schools within the same grade. Next, a likelihood ratio 

test comparing Models 2 and 3 suggests adding linear trends to the scale parameters for each school also 

leads to a statistically better fit (𝜒2 = 171.47, 𝑑𝑓 = 123, 𝑝 = 0.0026), implying there is enough 

systematic change in the relative variability of student mathematics performance across grades to include 

 
3 Because the tests differ across grades we do not expect the cut scores to be equal, but we also compared the fit of 
models that constrained the cut score locations to be equal across grades. For all three models, allowing cut scores 
to vary across grades provided statistically significantly better fit to the data. Therefore, we only report the results of 
models allowing cut scores to vary. 
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the additional parameters. Thus, for these data, we would select the linear trend pooled HETOP model to 

estimate means and standard deviations for each school in each grade. 

Table 2 also summarizes the estimated log standard deviation intercepts and trends for Models 2 

and 3. The summary statistics are not weighted by school sample size, in which case the average 

intercepts and trends would have been exactly 0 by construction. The average estimated intercepts were 

similar in Models 2 and 3, although there was slightly more variation in the Model 3 estimates. The linear 

trends in Model 3 ranged from -0.136 to 0.120 across schools (mean=0.002, SD=0.044), suggesting a level 

of heterogeneity in standard deviations that would lead the linear trend model to provide more accurate 

estimates than the fully pooled model based on the simulations. The table also summarizes the resulting 

means and standard deviations in the grade-standardized metric, �̂�𝑔𝑟
′  and �̂�𝑔𝑟

′ . The estimated means 

were similar across models, but as anticipated the estimated standard deviations differed. While average 

�̂�𝑔𝑟
′  values were similar across models, Models 2 and 3 indicate substantial additional variability among 

these estimates (with estimates ranging from 0.475 to 1.413 across schools and grades in Model 3).  

In addition to comparing the relative fit of models, different approaches might be used to assess 

overall goodness of model fit. Table 2 reports an overall chi-square goodness of fit statistic (“𝜒2 GOF”) 

based on the observed and expected frequency counts in each category in each school-grade cell. These 

may be of limited value because the large sample size could indicate statistically significant misfit that is 

not practically significant, and because these statistics do not indicate the nature of model misfit. As a 

descriptive measure of fit, Table 2 also reports the mean absolute difference between observed and 

expected proportions of students scoring in each category for each school-grade cell (“MAD P”). Across 

the 744 school-grade cells in Model 3, for example, the average difference was 0.030 (range 0.001 to 

0.137; median=0.026), indicating that Model 3 appears to accurately characterize the observed 

proportions for most schools. 
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Table 2. Summary Statistics for Estimated HETOP Models. 

 Statistic Model 1: HOMOP Model 2: Pooled Model 3: Trend 
 Log Likelihood -58869.534 -58628.980 -58543.246 
 Free Parameters 756 879 1002 
 𝜒2 GOF 2031.925 1556.515 1380.347 
 MAD P 0.037 0.032 0.030 

�̂�0 
Mean  -0.013 -0.018 

SD  0.115 0.151 
 Range  [-0.386, 0.394] [-0.344, 0.483] 

�̂�1 
Mean   0.002 

SD   0.044 
 Range   [-0.136, 0.120] 

�̂�′ 
Mean 0.856 0.852 0.850 

SD 0.013 0.098 0.117 
 Range [0.837, 0.877] [0.569, 1.304] [0.475, 1.413] 

�̂�′ 
Mean -0.019 -0.020 -0.020 

SD 0.526 0.518 0.519 
 Range [-1.249, 1.753] [-1.254, 1.512] [-1.266, 1.631] 

 
Note: MAD P = mean absolute difference between predicted and observed proportions; SD=standard 
deviation. The rows corresponding to 𝛽0 and 𝛽1 represent 124 unique estimates across schools; the rows 
summarizing �̂�′and �̂�′represent 744 estimates, although in Model 1 there are only 6 possible unique 
values of �̂�′. Means and SDs are unweighted.  
 

5. Discussion 

This paper presented a generalization of the HETOP model described by Reardon et al. (2017) 

that can be used to analyze grouped, ordered-categorical data when there are multiple waves of data 

available for each group. The fully pooled HETOP model leverages the repeated observations by 

estimating a constant scale parameter for each group across datasets, while the linear trend pooled 

HETOP model is more flexible and allows each group’s scale parameter to vary linearly across the 

datasets. The simulations and empirical analyses above document four primary reasons the pooled 

HETOP models might be preferred to standard HETOP models in practice. First, the pooled HETOP models 

can be estimated in some cases where there are not sufficient data to support estimation of full HETOP 
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models. Second, the pooled HETOP models may better represent observed patterns in group standard 

deviations than do models placing constraints across groups, which provides another method to address 

sparse data problems. Third, the pooled models reduce bias in standard deviation estimates relative to 

full HETOP models when sample sizes are very small, particularly when cut scores are widely or 

asymmetrically placed as is common in coarsened proficiency data. And, fourth, the pooled HETOP 

models improve the precision (i.e., reduce RMSE) of estimated standard deviations beyond gains made 

through reductions in bias.  

Whether these gains are realized in practice will depend on the nature of the data. When 

multiple waves of data are available, the pooled or trend HETOP models will preferable to models placing 

constraints across groups if there is more variability between groups than within. Our empirical analysis 

of national district-level data suggests that constraints within districts and subjects are likely to produce 

more accurate estimates than constraints across districts in the context of coarsened proficiency data, 

and that linear trends are likely to produce slightly more accurate estimates than fully pooled models. 

Analysts must also consider whether it is reasonable to expect greater heterogeneity between or within 

groups, and whether a linear trend is conceptually appropriate based on the nature of the data. It may 

not be reasonable, for example, to fit a linear trend across data from different subjects, where the 

repeated observations cannot be placed in a logical order as is possible with grades or years. However, it 

may still be reasonable to fit fully pooled models across subjects if the assumptions about the relative 

magnitudes of group standard deviations across subjects are plausible. The example in Section 4 

demonstrated how analysts could select an appropriate model using theoretical and statistical criteria. 

The simulation results provide additional information about the conditions under which pooled HETOP 

models are expected to lead to the greatest reductions in bias or RMSE relative to full HETOP or HOMOP 

models. The anticipated reductions in sampling error, for example, can be approximated based on the 

number of pooled datasets and the coding of the linear predictors used in the trend models. 
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This paper also leaves important directions for future work. As with any simulation study, many 

additional factors could have been varied. These factors include additional structures for the standard 

deviations (including structures that do not conform to the linear trends) as well as violations of 

respective normality. Another avenue for additional work revolves around the problems caused by non-

existence of ML estimates. Essentially, this is a problem of small samples containing limited information 

about the parameters of interest. In some simulation conditions, for example when sample sizes were 

n=10 for each group and cut scores were widely spaced, a substantial proportion of group count vectors 

needed to be adjusted to guarantee existence of the ML estimates when group means were freely 

estimated. A more complete proof of existence conditions for the ML estimates was not provided and 

would be a useful extension of the results here. It would also be worth testing models that place 

additional constraints (e.g., linear trends) on the estimated means as another method for overcoming 

sparse data problems, and evaluating additional model fit statistics.  

As mentioned above, Bayesian and random effects models provide an alternative approach to 

addressing existence and small-sample problems, but were beyond the scope of the present 

investigation. These models rely on specifying or estimating prior distributions, rather than attempting to 

estimate each term individually (e.g., Hedeker et al., 2009; Kapur et al., 2015). Recent work pursuing a 

Bayesian HETOP model (Lockwood et al., 2018) is similar to the framework described here with an 

additional random component. However, these Bayesian models have not yet been extended to 

simultaneously model data from multiple measures with potentially varying cut scores. While Bayesian 

approaches can overcome problems with the non-existence of the ML estimates and potentially produce 

estimates with smaller RMSE, they can increase the bias in estimates for individual groups, require 

appropriate specifications or estimates of prior distributions, and as with the HOMOP and PHOP models, 

they have so far relied on constraints across rather than within groups. Under certain conditions, 

including when estimates might be used in secondary analyses, ML estimates may be preferable, and in 
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those cases the models described here are a useful alternative. Pursuing extensions to these models that 

incorporate multiple sets of data would be a useful area for further study. 

Finally, we note that the models described in this paper can be applied to a wide range of 

ordered-categorical data beyond coarsened test scores. The pooled HETOP models described here are 

applicable any time analysts have multiple sets of grouped, ordered-categorical data for a common set of 

groups and wish to estimate distributional parameters of an underlying continuous variable. These data 

could arise from test scores reported only on ordinal scales such as Advanced Placement (AP) scores, 

from responses to Likert survey items, or from continuous variables such as income that are often 

reported in a coarsened form. 
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Appendix 

This Appendix provides more details about the data and statistical models used to analyze the 

empirical data from the Stanford Education Data Archive (SEDA; Reardon et al., 2018) data in Section 2. 

Data 

As noted in the main text, the data analyzed here are from SEDA version 2.1 (Fahle et al., 2018). 

We make the following sample restrictions to the SEDA version 2.1 database for the purposes of our 

analyses. First, some states reported proficiency data in only two categories during some years, requiring 

that HOMOP models were fit to these datasets. We drop these observations because all districts within 

that particular state, grade, subject, and year were constrained to have equal standard deviations. 

Second, in cases where data were reported in three or more proficiency categories (the majority of data), 

PHOP models were fit by constraining the logged standard deviation for districts with fewer than 50 

students to be equal to the average logged standard deviation of all districts with more than 50 students 

in the same state, grade, year, and subject. We therefore drop all district observations with estimates 

based on fewer than 50 students. These restrictions ensure that the remaining standard deviation 

estimates were estimated without constraints. After these restrictions, we drop all states with estimates 

for fewer than 50 districts. Final sample sizes are presented in the main text of the paper. 

Statistical Models 

SEDA contains estimates of 𝜎𝑔𝑟𝑡
′  (standardized within states, grades, years, and subjects) with an 

associated standard error for each district 𝑔 in grade 𝑟 and year 𝑡 in each state and subject. The SEDA 

data also contain estimated standard errors of the �̂�𝑔𝑟𝑡
′ ’s. We use the delta method to estimate the 

standard error of �̂�𝑔𝑟𝑡
′ = ln(�̂�𝑔𝑟𝑡

′ ) as: 

 𝑆𝐸(�̂�𝑔𝑟𝑡
′ ) = √

1

�̂�𝑔𝑟𝑡
′ 2 𝑆𝐸(�̂�𝑔𝑟𝑡

′ )
2

=
1

�̂�𝑔𝑟𝑡
′ 𝑆𝐸(�̂�𝑔𝑟𝑡

′ ). ( A20 ) 
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We use the estimated sampling variances of the �̂�𝑔𝑟𝑡
′  values in a variance-known model (Raudenbush & 

Bryk, 2002) that accounts for the sampling error in the estimates. For each state-subject dataset, the 

general form of the model begins with an equation for the estimated �̂�𝑔𝑟𝑡
′  values 

 

�̂�𝑔𝑟𝑡
′ = 𝛾𝑔𝑟𝑡

′ + 𝜖𝑔𝑟𝑡  

𝜖𝑔𝑟𝑡~𝑁(0, �̂�𝑔𝑟𝑡) 

( A21 ) 

where �̂�𝑔𝑟𝑡  is the square of the estimated standard error of �̂�𝑔𝑟𝑡
′ . We then fit two models for the 𝛾𝑔𝑟𝑡

′  

values in each state-subject dataset: 

 

Model 1: 𝛾𝑔𝑟𝑡
′  = 𝛽0𝑔 + Γ𝑟𝑡 + 𝑒𝑔𝑟𝑡, where 𝑒𝑔𝑟𝑡~𝑁(0, 𝜔1

2) and 𝛽0𝑔~𝑁(0, 𝜈00); 

 

Model 2: 𝛾𝑔𝑟𝑡
′  = 𝛽0𝑔 + 𝛽1𝑔𝑟 + 𝛽2𝑔𝑡 + Γ𝑟𝑡 + 𝑒𝑔𝑟𝑡, where 𝑒𝑔𝑟𝑡~𝑁(0, 𝜔2

2) and  

[

𝛽0𝑔

𝛽1𝑔

𝛽2𝑔

] ~𝑀𝑉𝑁 ([
0
0
0

] , 𝚻 = [
𝜏00

𝜏10 𝜏11

𝜏20 𝜏21 𝜏22

]). 

( A22 ) 

The Γ𝑟𝑡 are grade by year fixed effects. Grade and year variables were centered at the mean value within 

each state-subject dataset. All models were fit using the software HLM 7 (Raudenbush, Bryk, & Congdon, 

2013). 

Model 1 includes a random intercept for each district and represents the fully pooled HETOP 

model structure in each state-subject dataset. In this model, 𝜈00 is the variance between districts in 𝛾𝑔𝑟𝑡  

values, while 𝜔1
2 is the variance within districts across grades and years. Model 2 includes random grade 

and year linear trends for each district and represents the linear trend pooled HETOP model structure in 

each state-subject dataset; 𝜔2
2 is the unexplained within-district variance in 𝛾𝑔𝑟𝑡  values and the elements 

of 𝚻 indicate the variance of district-specific intercepts and linear trends. We can use estimates from 

Model 1 to estimate the ratio 𝜌 = �̂�00/(�̂�00 + 𝜔1
2) to quantify the proportion of variation in 𝛾𝑔𝑟𝑡  that is 

between districts. We then calculate the quantity Δ12 = 1 − 𝜔2
2/�̂�1

2, the percent of unexplained, within-

district variance in 𝛾𝑔𝑟𝑡values that can be explained by adding district-specific linear grade and year 
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trends. Table A1 summarizes the average values across the 80 state-subject models. Each row represents 

40 models estimated using ELA test score data and 40 models estimated using Math test score data. 

Interpretation of the results is presented in the main text. 

 

  



 46 

References 

Fahle, E. M., Shear, B. R., Kalogrides, D., Reardon, S. F., DiSalvo, R., & Ho, A. D. (2018). Stanford Education 

Data Archive: Technical documentation (Version 2.1). Retrieved from 

https://stacks.stanford.edu/file/druid:db586ns4974/SEDA_documentation_v21.pdf 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis 

methods (2nd ed.). Thousand Oaks, CA: Sage Publications, Inc. 

Raudenbush, S. W., Bryk, A. S., & Congdon, R. (2013). HLM 7.01 for Windows. Skokie, IL: Scientific 

Software International, Inc. 

Reardon, S. F., Ho, A. D., Shear, B. R., Fahle, E. M., Kalogrides, D., & DiSalvo, R. (2018). Stanford Education 

Data Archive (Version 2.1). Retrieved from https://cepa.stanford.edu/seda/overview 

  



 47 

 

Table A1. Summary of HLM Model Estimates by Subject. 

 ELA  Math 

Statistic Min Mean Max  Min Mean Max 

𝜔1
2 0.0004 0.0018 0.0045  0.0008 0.0028 0.0064 

𝜈00  0.0015 0.0033 0.0058  0.0015 0.0049 0.0103 

𝜌 0.4072 0.6519 0.8814  0.4280 0.6374 0.8846 

𝜔2
2 0.0000 0.0012 0.0036  0.0005 0.0020 0.0051 

𝜏00 0.0015 0.0033 0.0059  0.0015 0.0049 0.0104 

𝜏11  0.0000 0.0001 0.0004  0.0001 0.0002 0.0004 

𝜏22 0.0000 0.0001 0.0002  0.0000 0.0001 0.0002 

Δ12 0.1544 0.3463 0.9997  0.2071 0.2935 0.4260 

 

Note: This table summarizes estimates from Models 1 and 2 estimated in each state-subject dataset. 𝜔1
2 = 

residual variance in 𝛾𝑔𝑟𝑡  values in Model 1; 𝜈00 = between-district variance in 𝛾𝑔𝑟𝑡  values in Model 1; 𝜌 =

𝜈00/(𝜈00 + 𝜔1
2) is the percent of total variance between rather than within districts; 𝜔2

2 = residual 
variance in 𝛾𝑔𝑟𝑡  values in Model 2; 𝜏00 = between-district variance in 𝛾𝑔𝑟𝑡  values in Model 2; 𝜏11 and 𝜏22 

are between-district variances in grade and year trends, respectively; Δ12 = (𝜔1
2 − 𝜔2

2)/𝜔1
2 is the 

percent of unexplained variance in Model 1 that is explained by including linear grade and year trends in 
Model 2. 
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