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I. Introduction

Whether school spending has an effect on student outcomes has been an open question in the

economics literature, dating back to at least Coleman et al. (1966). The causal relationship between

spending and desirable outcomes is of obvious interest, as the share of GDP that the United States

spends on public elementary and secondary education has remained fairly large throughout the

past five decades, ranging from 3.7 to 4.5 percent.1 Given the large share of spending on education,

it would be useful to know if these resources are well spent. Despite this interest, we lack stylized

facts about the effects of spending on changes in student academic and adult outcomes. The goal

of this paper is to provide a robust description of the causal relationship between fiscal shocks

and student outcomes at the district level for US states undergoing financial reform for the period

1990-91 to 2009-10.

The opportunity for more robust descriptions of causal relationships with panel data emerges from

two sources. The first is that data collection efforts have extended the time dimension of panel data,

allowing for more sophisticated tests of the identifying assumptions of quasi-experimental meth-

ods such as differences-in-differences estimators. Previous research efforts on the effects of school

spending were hampered by data limitations such as this.2 The second is that recent econometric

methods have been developed to better model unobserved treatment heterogeneity, counterfactual

trends, pre-treatment trends (correlated random trends), and cross-sectional dependence (CSD). If

any of these unobserved components are correlated with regressors, then the econometric model will

be biased. Fortunately, it is possible to test for a wide variety of model specifications to determine

the sensitivity of causal estimates to modeling choice.

Using district-level aggregate data from the Common Core (CCD), we estimate the effects of

1These estimates come from the Digest of Education Statistics, 2013 edition. As of the writing of this draft, the
2013 version is the most recent publication available.

2See for example, Hoxby (2001) and Card & Payne (2002).
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fiscal shocks, where fiscal shocks are defined as a state’s first Supreme Court ruling that overturns

a given state’s finance system, on the natural logarithm of per-pupil spending and graduation

rates. Our estimation approach is designed to handle two aspects of the identification problem:

first, treatment occurs at the state level and, second, there is treatment effect heterogeneity within

states. At the state level, we are interested in identifying a plausibly exogenous shock to the

state’s finance system. Here, we wish to control for the presence of cross-sectional dependence

(CSD), which can arise if there is cross-sectional heterogeneity in response to common shocks,

spatial dependence or interdependence. We control for CSD by including interactive fixed effects,

as suggested by Bai (2009). These interactive fixed effects are estimated at the state level and

control for unobserved correlations between states in the panel.

It is known that unmodeled treatment heterogeneity can lead to bias if (a) the probability of

treatment assignment varies with a variable X and (b) the treatment effect varies with a vari-

able X (Angrist & Imbens, 1995; Angrist, 2004; Elwert & Winship, 2010). Here, we account for

treatment heterogeneity by constructing a time-invariant poverty quartile indicator variable equal

to 1 if a state’s district is in one of four poverty quartiles for year 1989. Each of these poverty

quartile variables is interacted with a treatment year variable, for a total of 76 (19 x 4) treatment

interactions. In order to provide a counterfactual for each of these poverty quartiles, we estimate a

poverty quartile-by-year secular trend indexed by poverty quartile-by-year fixed effects. Estimating

treatment heterogeneity in this way can provide an unbiased estimate of the treatment effect if we

have identified the correct heterogeneous variable.

A second concern is that the variable X (in this case a state’s poverty quartile) is not ignorably

assigned with respect to treatment. That is, a state’s Court order may be plausibly exogenous

with respect to the state but not with respect to sub-units within the state. To account for this,

we estimate state-by-poverty quartile linear time trends (referred to as correlated random trends).
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These provide pre-treatment balance with respect to state-poverty quartile trends in the dependent

variable.

All together, we estimate a heterogeneous differences-in-differences model that accounts for (a)

cross-sectional dependence at the state level, (b) a poverty quartile-by-year secular trend, and

(c) state-by-poverty quartile linear time trends. In this preferred specification, we find that high

poverty districts in states that had their finance regimes overthrown by Court order experienced

an increase in log spending by 4 to 12 percent and graduation rates by 5 to 8 percentage points

seven years following reform.

We then subject the model to various sensitivity tests by permuting the interactive fixed effects,

secular time trends, and correlated random trends. In total we estimate 15 complementary models.

Generally, the results are robust to model fit: relative to the preferred model, interactive fixed

effects and the specification of the secular time trend have modest effects on point estimates. The

model is quite sensitive to the presence of correlated random trends, however. When state-by-

poverty quartile time trends are ignored or estimated at a higher level of aggregation (the state),

the effects of reform on graduation rates are zero and precisely estimated. When we estimate the

linear time trend using a lower level of aggregation (the district), point estimates are similar to

those of the preferred model. We conclude that the timing of treatment is not exogenous with

respect to sub-units within the state, but conditionally exogenous point estimates are available

if we are willing to assume that the sub-unit pre-treatment trends can be approximated with a

functional form.

To test the extent to which results are redistributive, we estimate slightly different models,

allowing the effect of reform to be continuous across the poverty quantiles. That is, we interact

treatment year variables with a continuous poverty quantile variable, while controlling for secular
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changes in redistribution in untreated states. This provides an estimate of the marginal change

in graduation rate for a one-unit increase in poverty percentile rank within a state. Here we see

that the effect of reform was redistributive: for a 10 percentile increase in poverty within a treated

state, per-pupil log revenues increased by 0.9 to 1.8 percent and graduation rates increased by 0.5

to 0.85 percentage points in year seven.

Because we have aggregate data, one threat to identification would occur if treatment induced

demographic change and demographic variables correlate with outcomes. For instance, if state

spending increased school quality but kept property taxes down, high income parents (with chil-

dren who are presumably more likely to graduate) to schools housed in historically high poverty

districts. To test for this possibility, we estimate our “redistributive” models substituting the orig-

inal outcome variables for district level demographic variables that could indicate propensity to

graduate: percent poor, percent minority, and percent special education. We find no evidence that

the minority composition of high poverty districts changed after reform, but we do find that these

districts experienced an increase in poverty and percent of students qualifying for special education.

We would have to assume that increases in poverty and special education rates positively effect

graduation rates for our results to be biased in a meaningful way.

Jackson, Johnson, & Persico (2015) find that a $1000 increase in spending resulting from court-

ordered reform increased graduation rates by 19 percentage points. These results are not directly

comparable to ours, as our data do not permit us to leverage variation resulting from differential

exposure to spending. When we use total per pupil revenues as our outcome variable, we find that

the highest poverty decile within a state would have increased spending by about $990 to $1,800,

resulting in an increase in graduation by 5 to 8 percentage points. These results, albeit smaller in

magnitude, are largely in keeping with Jackson and colleagues.
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This paper makes substantive and methodological contributions. Substantively, we find that

court cases overturning a state’s financial system for the period 1991-2010 had an effect on revenues

and graduation rates, that these results are robust to a wide variety of modeling choices, and that

this effect was redistributive. Methodologically, we demonstrate the importance of transparency

in research practice, especially as it applies to panel estimators. Modeling strategies for panel

data sets encompass a wide selection of reasonable modeling choices, including specification of the

secular trend, correlated random trends, and cross-sectional dependence. Unless there are strong

priors for favoring one model over another, researchers can effectively and efficiently demonstrate

the sensitivity of point estimates to modeling choice.

II. Background

State-level court-ordered finance reform beginning in 1989 has come to be known as the ”Adequacy

Era.” These court rulings are often treated as fiscal shocks to state school funding systems. A

number of papers have attempted to link these plausibly exogenous changes in spending to changes

in other desired outcomes, like achievement, graduation and earnings (Card & Payne, 2002; Hoxby,

2001; Jackson et al., 2015). The results of Card and Payne (2002) and Hoxby (2001) were in

conflict, but these were hampered by data limitations, as only a simple pre- post- contrast between

treatment and control states was available to the researchers, thereby limiting their capacity to

verify the identifying assumptions of the differences-in-differences model.

Most recently, Jackson et al. (2015) have constructed a much longer panel (with respect to time),

with restricted-use individual-level data reaching back to children born between 1955 and 1985, to

test the effects of these cases on revenues, graduation rates and adult earnings. This study finds

large effects from Court order on school spending, graduation and adult outcomes, and these results
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are especially pronounced for individuals coming from low-income households and districts. For this

study, the sample of students are taken from the Panel Study of Income Dynamics (PSID), which is

representative at the national level. One concern with these data is that identification is leveraged

from variation between states over time, and results are disaggregated using within state variation

around income. If individuals are sampled randomly, estimates may be imprecise but unbiased; if,

however, individuals are sampled in a way that correlates with the timing of treatment, there may

be bias. It is not obvious how to test whether this bias exists, but it does cast a shadow of doubt

over their results.

The purpose of this paper is two-fold. First, it is important to show that results by Jackson

et al. (2015) can be replicated across other data sets. Here, we use data from the Common Core

(CCD), which provides aggregate spending and graduation rates for the universe of school districts

in the United States. Both the PSID and CCD have a kind of Anna Karenina problem, in which

each data set is unsatisfactory in its own way. The PSID follows individual students over time but

has unobserved sampling issues that may correlate with treatment; the CCD contains the universe

of districts but does not follow students over time and may not reveal sorting within districts. If

results are qualitatively similar across different data, we can feel more confident that estimates

do not reveal spurious correlations resulting from the sample generating process. Second, it is

important to show that results are insensitive to similarly compelling modeling choices. Jackson

and colleagues use graduation data from the Common Core of Data (CCD), as we do here, to

corroborate results from the PSID sampleJackson et al. (2015). While they find a pattern of results

from the CCD that is largely consistent with those results from the PSID, they do not test to see

whether those results are sensitive to model specification. If we are to believe that results from

the CCD sample largely corroborate results from the PSID, we must show that the identifying

assumptions using the CCD sample are met. Our purpose is to present results that are robust
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to modeling choices that account for secular trends, correlated random trends, and cross-sectional

dependence. In so doing, we provide upper and lower bounds on effect sizes by permuting these

parameters.

III. Data

Our data set is the compilation of several public-use surveys that are administered by the National

Center for Education Statistics and the U.S. Census Bureau. We construct our analytic sample

using the following data sets: Local Education Agency (School District) Finance Survey (F-33);

Local Education Agency (School District) Universe Survey; Local Education Agency Universe

Survey Longitudinal Data File: 1986-1998 (13-year); Local Education Agency (School District)

Universe Survey Dropout and Completion Data; and Public Elementary/Secondary School Universe

Survey.3

Our sample begins in the 1990-91 school year and ends in the 2009-10 school year. The data set

is a panel of aggregated data, containing United States district and state identifiers, indexed across

time. The panel includes the following variables: counts of free lunch eligible (FLE) students,

per pupil log and total revenues, percents of 8th grade students receiving diplomas 4 years later

(graduation rates), total enrollment, percents of students that are black, Hispanic, minority (an

aggregate of all non-white race groups), special education, and children in poverty. Counts of FLE

students are turned into district-specific percentages, from which within state rankings of districts

based on the percents of students qualifying for free lunch are made. Using FLE data from 1989-90,

we divide states into FLE quartiles, where quartile 4 is the top poverty quartile for the state. Total

revenues are the sum of federal, local, and state revenues in each district. We divide this value

3Web links to each of the data sources are listed in the appendix.
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by the total number of students in the district and deflate by the US CPI, All Urban Consumers

Index to convert the figure to real terms. We then take the natural logarithm of this variable. Our

graduation rates variable is defined as the total number of diploma recipients in year t as a share of

the number of 8th graders in year t−4, a measure which Heckman & LaFontaine (2010) show is not

susceptible to the downward bias caused by using lagged 9th grade enrollment in the denominator.

We top-code graduation rates, so that they take a maximum value of 1.4 The demographic race

variables come from the school-level file from the Common Core and are aggregated to the district

level; percents are calculated by dividing by total enrollment. Special education counts come from

the district level Common Core. Child poverty is a variable we take from the Small Area Income

and Poverty Estimates (SAIPE).

To define our analytic sample, we place some restrictions on the data, and we address an issue

with New York City Public Schools (NYCPS). First, we drop Hawaii and the District of Columbia

from our sample, as each place has only one school district. We also dropped Montana from our

analysis because they were missing a substantial amount of graduation rate data. We keep only

unified districts to exclude non-traditional districts and to remove charter-only districts. We define

unified districts as those districts that serve students in either Pre-Kindergarten, Kindergarten, or

1st grade through the 12th grade. For the variables total enrollment, graduation rates and FLE,

NYCPS reports its data as 33 geographic districts in the nonfiscal surveys; for total revenues,

NYCPS is treated as a consolidated district. For this reason, we needed to combine the non-fiscal

data into a single district. As suggested in the NCES documentation, we use NYCPS’s supervisory

union number to aggregate the geographical districts into a single entity.

We noticed a series of errors for some state-year-dependent variable combinations. In some states,

counts of minority students were mistakenly reported as 0, when in fact they were missing. This

4In Appendix A, we describe where the data was gathered and cleaned, including URL information for where data
can be found.
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occurred in Tennessee, Indiana, and Nevada in years 2000-2005, 2000, and 2005, respectively. The

special education variable had two distinct problems. For three states it was mistakenly coded as 0

when it should have been coded as missing. This occurred in Missouri, Colorado, and Vermont in

years 2004, 2010 and 2010, respectively. We also observed state-wide 20 percentage point increases

in special education enrollment for two states, which immediately returned to pre-spike levels in

the year after. This occurred in Oregon and Mississippi in years 2004 and 2007, respectively.

Finally, graduation rate data also spiked dramatically before returning to pre-spike levels in three

state-years. This occurred in Wyoming, Kentucky and Tennessee in years 1992, 1994 and 1998,

respectively. In each of these state-year instances where data were either inappropriately coded as

zero or fluctuated due to data error, we coded the value as missing.

To our analytic sample, we add the first year a state’s funding regime was overturned in the

Adequacy Era. The base set of court cases comes from Corcoran & Evans (2008), and we updated

the list using data from the National Education Access Network.5 Table I lists the court cases we

are considering. As shown, there are a total of twelve states that had their school finance systems

overturned during the Adequacy Era. Kentucky was the first to have its system overturned in 1989

and Alaska was the most recent; its finance system was overturned in 2009.

[Insert Table I Here]

Table II provides summary statistics of the key variables in our interpolated data set, excluding

New York City Public Schools (NYCPS).6 We have a total of 188,752 district-year observations.

The total number of unified districts in our sample is 9,916. The average graduation rate is about

77 percent and average log per pupil spending is 8.94 (total real per pupil revenues are about

$7,590). When we do not weight our data by district enrollment, we obtain similar figures, but

5The National Education Access Network provides up-to-date information about school finance reform and litiga-
tion. Source: http://schoolfunding.info/.

6We drop NYCPS because it is an outlier district in our data set. We provide a detailed explanation of why we
do this in our results section.

9

http://schoolfunding.info/


they are slightly larger.

[Insert Table II Here]

IV. Econometric specifications and model sensitivity

In this section, we describe our empirical strategy to estimate the causal effects of school finance

reform at the state level on real log revenues per student and graduation rates at the district

level. We begin by positing our benchmark model, which is a differences-in-differences equation

that models treatment heterogeneity across FLE poverty quartiles. We then explain what each of

the parameter choices are designed to control for and why they are selected. Because treatment

occurs at the state level and our outcomes are at the district level, there are several ways to

specify the estimating equation. For example, there are choices about whether and how to model

the counterfactual time trend and how to adjust for correlated random trends (i.e., pre-treatment

trends) and unobservable factors such as cross-sectional dependence. We outline these alternative

modeling choices and discuss their implications relative to the benchmark model.

IV.A. Benchmark differences-in-differences model

To identify the causal effects of finance reform, we leverage the plausibly exogenous variation

resulting from state Supreme Court rulings overturning a given state’s fiscal regime. Prior education

finance studies have also relied on the exogenous nature of court rulings to estimate causal effects on

fiscal and academic outcomes (see, for example, Jackson et al., 2015; Sims, 2011). After a lawsuit is

filed against a state’s education funding system, we assume that the timing of the Court’s ruling is

unpredictable. Under this assumption, the decision to overturn a funding system defines treatment

and the date of the decision constitutes a random shock.
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With panel data, the exogenous timing of court decisions generates a natural experiment that can

be modeled using a differences-in-differences framework. States were subject to reform in different

years and not all states had reform, which provides treatment and control groups over time. Our

benchmark differences-in-differences model takes the following form:

Ysqdt = θd + δtq + ψsqt+ P ′stβq + λ′sFt + εsdt,(1)

where Ysqdt is an outcome of interest—real log revenues per student or graduation rates—in state

s, in poverty quartile q, in district d, in year t; θd is a district-specific fixed effect; δtq is a time by

poverty quartile-specific fixed effect, ψsqt is a state by quartile-specific linear time trend; Pit is a

policy variable that takes value 1 in the year state s has its first reform and remains value 1 for

all subsequent years following reform; λ′sFt is a factor structure that accounts for cross-sectional

dependence at the state level; and εsdt is assumed to be a mean zero, random error term. To

account for serial correlation, all point estimates have standard errors that are clustered by state,

the level at which treatment occurs (Bertrand, Duflo, & Mullainathan, 2004).

Our parameters of interest are the βq, which are the causal estimates of school finance reform

in quartile q on Ysqdt. We define q such that q ∈ {1, 2, 3, 4}, and the highest level of poverty is

represented by quartile 4.7 Throughout our paper, we parameterize the policy variable P ′it such

that each poverty quartile’s effect is estimated, so we do not have an omitted quartile. Moreover,

we allow treatment effects to have a dynamic treatment response pattern (Wolfers, 2006). Each βq,

therefore, is a vector of average effect estimates in the years after reform in quartile q.

Overall, we estimate 19 treatment effects for each poverty quartile’s vector of effects. Although

there are 21 effects we can potentially estimate, we combine treatment effect years 19 though 21

7Using FLE data from 1989-90, we divide states into FLE quartiles, where quartile 4 is the top poverty quartile
for the state.
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into a single binary indicator, as there are only two treatment states that contribute to causal iden-

tification in these later years.8 In reporting our results, we only report effect estimates for years 1

through 7 after reform. We do this because estimating treatment effects several years after treat-

ment occurs results in precision loss and because because very few states were treated early enough

to contribute information to treatment effect estimates in later years (see Table I). All together,

this model absorbs approximately 9,800 district fixed effects, 76 year effects, 192 continuous fixed

effects (state-by-FLE quartile interacted with linear time), as well as the factor variables λ′sFt. We

estimate standard errors clustered at the state level by including the estimated factors and factor

loadings as the covariates θsFt + δtλs.
9 These non-treatment parameters are eliminated using high

dimensional fixed effects according to the Frisch-Waugh-Lovell theorem (Frisch & Waugh, 1933;

Lovell, 1963).10

IV.B. Explaining model specifications

We now wish to articulate what the parameters from Equation (1) are controlling for and why they

are included in the model. Researchers are presented with a number of modeling choices, and our

goal here is to be transparent about what reasons we have for parameterizing the model the way

we do. This also opens the possibility for subjecting the model to sensitivity analysis, in order

to determine upper and lower bounds of point estimates, in relation to our preferred model. In

particular, we examine choices related to cross-sectional dependence, secular trends, and correlated

random trends. We also consider the difference between OLS regression and weighted least squares

(WLS) regression, where the weights are measures of time varying district enrollment. As will be

8While our data sample has 20 years of data, we have up to 21 potential treatment effects, as KY had its reform
in 1989 and our panel begins in the 1990-91 academic year. Therefore, KY does not contribute to a treatment effect
estimate in the first year of reform, but it does contribute to effect estimates in all subsequent treatment years.

9Appendix D shows how an estimated factor structure can be included in an OLS regression framework to obtain
a variety of standard error structures.

10The model is estimated in Julia using the package FixedEffects.jl and SparseFactorModels.jl (Gomez, 2015a,b)
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shown in the results section, certain parameterizations of the differences-in-differences model have

substantial impacts on point estimates relative to our benchmark model.

IV.B.1. Cross-sectional dependence

In our benchmark model, the terms λ′sFt specify that the error term has a factor structure that

affects Ysqdt and may be correlated with P ′st, the treatment indicators. Following Bai (2009), we

define λs as a vector of factor loadings and Ft as a vector of common factors. Each of these vectors

is of size r, which is the number of factors included the model; in our model, we set r = 1. In

the differences-in-differences framework, the factor structure has a natural interpretation. Namely,

the common factors Ft represent macroeconomic shocks that affect all the units (e.g., recessions,

financial crises, and policy changes), and the factor loadings λs capture how states are differentially

affected by these shocks. Of particular concern is the presence of interdependence, which can

result if one state’s Supreme Court ruling affects the chances of another state’s ruling. This, of

course, violates the identifying assumptions of the differences-in-differences model and results in

bias, unless that interdependence is accounted for (Pesaran & Pick, 2007; Bai, 2009).

To estimate the λ′sFt factor structure in Equation (1), we use the method of principal components

as described by Bai (2009) and implemented by Moon & Weidner (2015); Gomez (2015b). The

procedure begins by choosing starting values for the βq vector, which we denote as β̃q. Then, the

following steps are carried out:

[1] Calculate the residuals of the OLS estimator excluding the factor structure using β̃.

[2] Estimate the factor loadings, λs, and the common factors, Ft, on the residual vector obtained

in step [1] using the Levenberg- Marquardt algorithm (Wright & Holt, 1985).

[3] After estimating the factor structure, we remove it from the regressors using partitioned

13



regression. Then, we re-estimate the model using a least squares objective function in order

to obtain a new estimate of β̃.

[4] Steps [1] to [3] are repeated until the following stopping condition is achieved: After comparing

each element of the vector β̃ obtained in step [3] with the previous estimate β̃old, we stop if

|β̃k − β̃oldk | < 10−8 for all k. If this condition is not achieved, then we stop if the difference

in the least squares objective function calculated in step [3] is greater than the Total Sum of

Squares multiplied by 10−10. This stopping condition takes effect when the estimator is not

converging.

Traditional approaches to factor methods specify factor loadings at the lowest unit of analysis, in

this case d. However, we are interested in accounting for interdependence between states, the level

at which treatment occurs. While principal components analysis generally requires one observation

per i-by-t, sparse factor methods are available that allow for multiple i per t, as in our case, where

we have multiple districts d within states s for every year t (Wright & Holt, 1985; Raiko, Ilin, &

Karhunen, 2008; Ilin & Raiko, 2010).

IV.B.2. Secular time trends

Secular time trends, often specified non-parametrically using binary indicator variables, adjust for

unobservable factors affecting outcome variables over time. The usual assumption is that these

factors affect all units—in our case, districts—in the same way in a given year. Examples of

unobservable factors include national policy changes and macroeconomic events such as recessions.

In our differences-in-differences model, having the correct specification of the secular trend is

important because the treatment effect parameters are estimated relative to the trend. By OLS

algebra, each year of the trend is estimated using variation from districts in non-treated states and
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districts in treatment states awaiting reform; therefore, we must believe it represents the average

counterfactual trend that treated districts would have had in the absence of treatment. If it is not

modeled properly, the common trends assumption of the differences-in-differences model is violated

and results would be biased.

In our benchmark specification, we control for secular time trends by including year by FLE

quartile-by-year fixed effects, denoted as δtq. We include these δtq fixed effects, instead of standard

year fixed effects, to establish a more plausible counterfactual trend for treated districts. We assume

that there are unobserved characteristics common to districts of each FLE quartile that vary over

time. In terms of the differences-in-differences framework, we are comparing treated districts in a

given quartile before and after treatment relative to control districts before and after treatment in

the same quartile.

IV.B.3. Correlated random trends

If the timing of a state’s court ruling decision is correlated with unobserved trends at the state,

district, or other group level (e.g., state by FLE quartile), we must control for these trends to

obtain unbiased estimates of causal parameters. In the literature, these trends are formally called

correlated random trends (Wooldridge, 2005, 2010), but they are often informally referred to as pre-

treatment trends. Correlated random trends serve a distinct purpose from secular, non-parametric

trends. While the secular trends help to establish a plausible counterfactual trend for the common

trends assumption to hold, correlated random trends guard against omitted variable bias caused

by an endogenous policy shock.

In Equation (1), the parameter ψsqt is included because we believe the timing of the state ruling

is correlated with pre-treatment trends within the state, approximated by a state-by-quartile-

specific slope. The inclusion of this parameter aligns with the notion that the date on which a
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court-ordered finance system is deemed unconstitutional is correlated with the slope of the FLE

quartile trend within the state. For example, if graduation rates are steeply declining among the

most impoverished districts within state s, we might expect a reform decision sooner than if the

graduation rate had a mild, decreasing trend. Evidence for variation in pre-treatment trends within

states can be seen in In Figure I. This Figure shows weighted mean log spending and graduation

rates for states that experienced a Court ruling over time, where time is centered around the year

of Court ruling. With respect to graduation rates, there is an obvious downward trend prior to a

Court’s ruling.

[Insert Figure I Here]

IV.B.4. Treatment heterogeneity

In Equation (1), we explicitly model treatment heterogeneity by disaggregating treatment effects

into poverty quartiles, q (Meyer, 1995). These quartiles are derived from the percentages of Free

Lunch Eligible (FLE) students reported at the district level in each state in 1989. We fix the year

at the start of our sample because the poverty distribution could be affected by treatment over

time. The quartiles are defined within each state.

While we capture treatment heterogeneity across poverty quartiles, we may fail to capture other

sources of treatment heterogeneity. Weighting a regression model by group size is traditionally

used to correct for heteroskedasticity, but it also provides a way to check whether unobserved

heterogeneity is properly modeled. According to asymptotic theory, the probability limits of OLS

and weighted least squares should be consistent. Regardless of how you weight the data, the point

estimates between the two models should not dramatically differ. However, when OLS and WLS

estimates diverge substantially, there is concern that the model is not correctly specified, and it may

be due in part to unobserved heterogeneity (Solon, Haider, & Wooldridge, 2015). In our analyses,
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the heterogeneity is associated with district size.

For our differences-in-differences specification, we examine the sensitivity of our point estimates

to the inclusion of district-level, time-varying enrollment weights. We provide a detailed discussion

about discrepancies between weighted and unweighted point estimates in the next section.

IV.C. Alternative model specifications

Here we quickly outline alternative model specifications. In the Results section, we explore the

sensitivity of our preferred model to alternative parameterizations. In general, we attempt to

include alternative models that are typical in the panel methods and econometric literature. In

total, we estimate 15 alternative models that broadly fall within the bounds of typical modeling

choices. In the Results section, we provide upper and lower bounds for how much point estimates

depart from our preferred model. Here, we outline the alternatives we estimate:

1. Cross-sectional dependence: We estimate models in which we assume λ′sFt = 0, as well as

models in which the number of included factors r is ∈ 1, 2, 3.11

2. Secular time trend : We estimate models in which we set δtq = δt, thereby modeling the

counterfactual time trend as constant across cross-sectional units.

3. Correlated random trend : We estimate models in which we set ψsqt =∈ {ψst, ψdt, ψsqt2, ψst2}.

That is, we allow the pre-treatment trend to be estimated at the state and district levels, as

well as allowing the time trend to have a quadratic functional form.

11Moon & Weidner (2015) show that point estimates stabilize once the number of factors r equals the true number
of factors r◦ and that when r > r◦, there is no bias. However, this is only true when the time dimension t in the
panel approaches infinity. When t is small, it is possible to increase bias by including too many factors. See Table
IV in their paper, as well as Onatski (2010) and Ahn & Horenstein (2013).
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V. Results

We present our results in four parts. We first show and discuss the causal effect estimates of

court-ordered finance reforms using our benchmark differences-in-differences model. Second, we

examine the extent to which our benchmark model point estimates are sensitive to assumptions

about secular trends, correlated random effects, and cross-sectional dependence. Third, we assess

whether reforms were redistributive across the FLE poverty distribution; we wish to test formally

whether, within treated states, poorer districts benefited more relative to richer districts in terms

of revenues and graduation rates. Finally, we conclude with a series of robustness checks that allow

us to gauge the validity of our causal estimates.

V.A. Benchmark differences-in-differences model results

V.A.1. Revenues

We report our causal effect estimates of court-ordered finance reform on the logarithm of per pupil

revenues and graduation rates in Tables IV and V, respectively. We obtain results by estimating

our benchmark differences-in-differences model in Equation (1). FLE quartile 1 represents low-

poverty districts, and FLE quartile 4 represents high-poverty districts. We only report treatment

effect years 1 though 7 because the number of states in the treated group changes dramatically

over time. Some states were treated very late (or very early), and we do not have enough years of

data to follow them past 2010. As shown in Table III, 6 years after treatment, Alaska and Kansas

no longer contribute treatment information; in years 7 and 8, we lose North Carolina and New

York.12 We display both weighted and unweighted estimates, where the weight is time-varying

district enrollment.

12Throughout the rest of paper we restrict the description of our results for years less than or equal to 7, though
estimation occurs for the entire panel of data.
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[Insert Table III Here]

Examining the weighted results in Table IV, we find that court-ordered finance reforms increased

revenues in all FLE quartiles in the years after treatment, though not every point estimate is

significant at conventional levels. Because our models include FLE quartile by year fixed effects,

we cannot compare results across the quartiles; rather, point estimates for a given quartile should

be interpreted as relative to other FLE quartiles that are in the control group. For example, in

year 7 after treatment, districts in FLE quartile 1 had revenues that were 12.7 percent higher than

they would have been in the absence of treatment, with the counterfactual trend established by

non-treated districts in FLE quartile 1. This point estimate is significant at the 1 percent level.

In FLE quartile 4, we find that the revenues were 11.9 percent higher relative to what they would

have been in the absence of reform; this point estimate is significant at the 5 percent level.

Compared to weighted results, the unweighted results in Table IV suggest that revenues in-

creased, but many of the point estimates are not significant. In FLE quartile 4, for example, all

point estimates are positive, but none are significant. The magnitude of point estimates is also

substantially smaller than those from the weighted regression. In year 7, point estimates across the

quartiles are at least half as a small as the corresponding point estimates from the weighted model.

When weighted and unweighted regression estimates diverge, there is evidence of unmodeled het-

erogeneity, which we will discuss momentarily. Overall, revenues increased across all FLE poverty

quartiles in states with Court order, relative to equivalent poverty quartiles in non-treated states.

[Insert Table IV Here]

V.A.2. Graduation rates

With respect to graduation rates, the weighted results in Table V show that court-ordered finance

reforms were consistently positive and significant among districts in FLE quartile 4. In the first
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year after reform, graduation rates in quartile 4 increased modestly by 1.3 percentage points. By

treatment year 7, however, graduation rates increased by 8.4 percentage points, which is significant

at the 0.1 percent level. It is worth emphasizing that each treatment year effect corresponds to a

different cohort of students. Therefore, the dynamic treatment response pattern across all 7 years

is consistent with the notion that graduation rates do not increase instantaneously; longer exposure

to increased revenues catalyzes changes in academic outcomes. We find modest evidence that FLE

quartiles 2 and 3 improved graduation rates following Court order, though these point estimates are

not consistently significant and are smaller in magnitude than those in FLE 4. The lowest-poverty

districts in FLE quartile 1 have no significant effects, and the point estimates show no evidence of

an upward trend over time.

The unweighted graduation results in Table V tell a similar story as the weighted results; one

key difference is that the point estimates tend to be smaller. In FLE quartile 4, for example,

graduation rates are 4.7 percentage points higher in year 7 that they would have been in the

absence of treatment. This point estimate is almost half the size of the corresponding estimate

when using weights. Although districts in the lowest-poverty quartile exhibit some marginally

significant effects, these effects are small, and do not suggest a substantial increase from their levels

before reform, which corresponds to the weighted regression results.

[Insert Table V Here]

V.A.3. Understanding differences between weighted and unweighted results

Although the discrepancy between weighted and unweighted results is an indication of model mis-

specification, we present some evidence that the mis-specification is driven, in part, by unmodeled

treatment effect heterogeneity that varies by district size (Solon et al., 2015). To examine this, we

discuss the New York City public schools district (NYCPS) as a case study. Throughout all our
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analyses, we have excluded NYCPS, the largest school district in the United States, because of its

strong influence on the point estimates in FLE quartile 4 when weighting by district enrollment.13

In Figure II, we plot the causal effect estimates for treatment years 1 to 7 for both the logarithm

of per pupil revenues (left panel) and graduation rates (right panel) when NYCPS is included in

the sample and when it is not. For the unweighted regressions, it does not matter whether NYCPS

is included, as all districts are weighted equally. In the figure, the point estimates are identical

and are represented by the dashed lines. The weighted regression results, however, show that the

inclusion of the NYCPS district produces point estimates for revenues that are systematically higher

than weighted results that exclude NYCPS. A similar story holds for graduation rates beginning in

treatment year 4. After excluding NYCPS, the weighted model results are closer to the unweighted

point estimates, though they still do not perfectly align.

[Insert Figure II Here]

Examining NYCPS provides just one example of how treatment heterogeneity might be related

to district size. As shown in Appendix Figure B.1, NYCPS Graduation rates and teacher salaries

increased after 2003, the year New York had its first court ruling. Enrollment, percent poverty, class

size and percent minority decreased during this period. Each of these are potential mechanisms

for improving graduation rates and likely contribute to the large treatment effect we observe in the

weighted results. For all analyses, we drop NYCPS from our sample because its district enrollment

weight is near 1 million throughout our sample period, which is an outlier in the distribution of

district enrollment. Dropping the next set of largest districts does not have such a dramatic effect

on the results as dropping NYCPS does. For this reason, we retain all other districts.

In line with Solon et al. (2015), we acknowledge that we are not necessarily estimating popula-

tion average partial effects when using weighted least squares; instead, our OLS and WLS results

13To be clear, NYCPS was removed from our analytic sample before estimating the benchmark regressions above.
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are identifying different weighted averages of complex heterogenous effects that vary according to

district size. In the presence of these heterogeneous effects neither set of results—weighted or

unweighted—should be preferred. Trying to model the heterogeneity is also quite complex, as il-

lustrated with the NYCPS case study. Overall, our weighted and unweighted point estimates are

generally consistent in terms of sign; however, the magnitude of the effect size tends to differ. In

light of this, we continue to show weighted and unweighted estimates in our tables. As the un-

weighted results tend to produce smaller effect sizes than the the weighted results, the unweighted

results may be considered lower bound estimates of the (heterogeneous) treatment effect, and the

weighted results may be considered as upper bound estimates.

V.B. Model sensitivity

Our benchmark model indicates a meaningful positive and significant effect of Court order on the

outcomes of interest. To examine model sensitivity, we focus attention on districts in the highest

poverty quartile (i.e., FLE quartile 4). We place emphasis on these districts because the effect

of the policy is concentrated in high poverty district. The evidence suggests there was an effect

for graduation rates and revenues for the FLE quartile 4 districts, but these results assume that

our benchmark model makes correct assumptions about secular trends, correlated random trends,

and cross-sectional dependence.14. We now assess the extent to which results are sensitive to these

modeling choices.

Figures III and IV graphically show the variability of causal effect estimates of finance reform

on the logarithm of per pupil revenues and graduation rates, respectively, across a variety of model

specifications. Each marker symbol represents the difference between two point estimates, one from

an alternative model specification and the other from our benchmark model; we calculate this dif-

14Although the unweighted revenue results are not statistically significant, they point estimates show a consistent
positive effect
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ference for treatment years 1 through 7. In the figures, we normalize our benchmark effect estimates

to zero in each year. If a point estimate is greater than zero, then our model understates the effect

from the alternative model; if it is less than zero, our model overstates the effect. We report more

traditional regression tables with point estimates and standard errors in the Appendix.15 We also

report models with high order correlated random trends in the Appendix tables.16

While we do not report all possible combinations of different secular trend, correlated random

trend, and cross-sectional dependence models, the 11 models we do show provide insight into

sensitivity of the causal effect estimates. In both figures, our benchmark differences-in-differences

model corresponds to the third model in the legend, which is denoted by an “x” marker symbol

and the following triple:

• ST: FLE by year; CRT: State by FLE; CSD: 0 (delimiter is the semicolon).

ST refers to the type of secular trend, which we model as either FLE by year fixed effects or year

fixed effects. CRT refers to the type of correlated random trend in the model, which we specify

as state-specific, state by FLE quartile-specific, or district-specific trends.17 Each of these trends

is formed by interacting the appropriate fixed effects with a function of time, whether linear or

quadratic. Finally, CSD refers to the number of factors we include to account for cross-sectional

dependence. A model with factor number 0 does not account for cross-sectional dependence, while

models with 1, 2, or 3 account for models with 1 factor, 2 factors, and 3 factors, respectively.

In Figure III, we find that, on average, our benchmark model understates causal effects on

revenues in FLE quartile 4 relative to all other graduation rate models. The largest effects in both

15For log per pupil revenues, Appendix Tables C.1 and C.2 report weighted results and unweighted results, respec-
tively. For graduation rates, Appendix Tables C.3 and C.4 report weighted and unweighted results, respectively.

16We exclude correlated random trend estimates that allow the time trend to have a quadratic function. Quadratic
correlated trends, at the state and state-FLE quartile levels, are very noisy, with standard errors at times greater
than twice the magnitude of point estimates. These terms are shown in the Appendix.

17Bracketed numbers indicate the column location for those model estimates available in Appendix Tables C.1,
C.2, C.3, C.4.
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the weighted and unweighted regressions are produced by a specification that includes year fixed

effects for the secular trend, a correlated random trend at the state level, and no adjustment for

cross-sectional dependence. The point estimates from this model are large, and they are precisely

estimated. Although these results suggest there were large revenue effects, we worry that this

specification ignores omitted variables, such as CSD, as well as mis-specifies the counterfactual

trend, all of which could result in upward bias.

Indeed, when we limit the identifying variation within a FLE poverty quartile and year, point

estimates shrink in magnitude. Correlated random trends also matter in terms of the level at which

they are specified. Using only state specific trends inflates the effect size. While bias generated from

cross-sectional dependence might also be an issue, the revenue results suggest that point estimates

are not greatly influenced when we account for it. This is encouraging as interdependence between

states that affected the timing of reform is a serious threat to identification in the differences-in-

differences framework and is not generally tested.

Finally, recall that unweighted log revenues results were smaller in magnitude than weighted re-

sults and generally noisier. When we subject the model to alternative specifications (in particular,

ignoring cross-sectional dependence), we see that there is a great deal of heterogeneity in the mag-

nitudes of these point estimates. We believe that our model is correct, but it is worth emphasizing

that it is a lower bound relative to other modeling choices.

[Insert Figure III Here]

We consider the variability of graduation rate estimates in Figure IV. Unlike the revenues results,

we have cases where our benchmark model both over- and under-states effect estimates relative to

other models.

Of particular interest is the influence of correlated random trends. In the absence of specifying a
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correlated random trend, point estimates are between 2 to 6 percentage points smaller than point

estimates from our benchmark model. By including a state-level time trend (indicated by the larger

solid diamond and hollow square), point estimates are nearer to our preferred model, but are still

lower by about 2 percent. Modeling the time trends was motivated by the fact that FLE 4 districts

were trending differently prior to reform than FLE districts 1 through 3, and this is reinforced here.

Overall, we find evidence of omitted variable bias when correlated random trends are excluded from

the model. By including the trend, the assumption is that we now have a correctly specified model

conditional on the trend.

When our benchmark model understates the causal effects of other models, we find that the

primary difference is whether an adjustment for cross-sectional dependence has been made. Our

benchmark model accounts for a cross-sectional dependence using a 1-factor model. The models

with the largest point estimates, relative to our benchmark model, do not account for cross-sectional

dependence. It appears that treatment might be correlated with macroeconomic shocks affecting

graduation rates, or that treatment might be induced by another state’s pattern of graduation rates.

After correcting for cross-sectional dependence, point estimates are not as large. It is important to

emphasize that we do not know the true number of factors r to include in the model. Unfortunately,

due to finite sample bias, we cannot include as many factors as is necessary to make the errors i.i.d.

[Insert Figure IV Here]

Overall, we find that our preferred model tends to understate effect sizes for real log revenues

and that causal effect estimates for graduation rates are variable depending on how we model

secular trends, correlated random trends, and cross-sectional dependence. When we adjust for

pre-treatment trends (especially pre-treatment trends for state-by-FLE quartiles) point estimates

for graduation rates stabilize and the variation around our benchmark estimates is less than 2

percentage points.
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Changing parameters in a model is not trivial because some of these changes affect the identifica-

tion strategy while others affect assumptions about omitted variable bias. To the extent possible,

researchers should aim for transparency in reporting causal estimates where different model param-

eterizations may be applied. One of the aims of this paper is that transparency can be accomplished

with relative ease, as depicted in Figures III and IV.

V.C. Redistributive effects

To test whether revenues and graduation rates increased more in high poverty districts following

court order, we construct a variable that ranks districts within a state based on the percents of

students qualifying for FLE status in 1989. This ranking is then converted into a percentile by

dividing by the total number of districts in that state. Compared to percents qualifying for free

lunch, these rank-orderings put districts on a common metric, and are analogous to FLE quartiles,

but with a continuous quantile rank-ordering.

The model that we estimate is analogous to Equation (1) with three changes:

1. We replace δtq to equal δt, so that the secular trend in Ysqdt is modeled as the average across

all districts.

2. We add a parameter δtQ, which is a continuous fixed effect variable that controls for year-

specific linear changes in Ysqdt with respect to Q, where Q is a continuous within-state poverty

quantile rank-ordering variable bounded between 0 and 1.

3. The treatment variable P ′stβq is set to equal P ′stQ.

Item [1] now adjusts for the average annual trend in revenues and graduation rates among

untreated districts. Item [2] is done to provide a counterfactual secular trend with respect to
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how much non-treated states are “redistributing” Ysqdt with respect to Q. The secular trend in

these models now adjusts for the rate that revenues and graduation rates are changing across FLE

quantiles among untreated districts as well as the average annual trend.18

The interpretation of the point estimates on the treatment year indicators, indicated in Item [3],

is the marginal change in our outcome variable Ysqdt given a one-unit change in FLE quantile within

a state. For revenues, a point estimate of 0.0001 is equivalent to a 0.01 percent change in per pupil

total revenues for each one-unit rank-order increase in FLE status within a state. For graduation

rates, a point estimate of 0.0001 is equivalent to a 0.01 percentage point increase for each one-unit

rank-order increase. A positive coefficient indicates that more revenues and graduation rates are

going to poorer districts within a state.

We perform OLS and WLS, for Equation (1), with the modifications described just above. These

results can be seen for both dependent variables in Table IV and V. The columns of interest are

columns 5 and 10, which are labeled FLE Continuous.

After court-ordered reform, revenues increased across poverty quantiles, as indicated by the

positive slope coefficients in Table IV. Seven years after reform, a 10-unit increase in FLE percentile

is associated with a 0.9 percent increase in per-pupil log revenues for the weighted regression. For

the unweighted regression, a 10-unit increase is associated with a 1.8 percent increase. As previously

discussed in Section V.A.3., neither the weighted nor unweighted model results dominate each other,

so we can view the slope coefficient as having a lower bound of 0.9 percent and an upper bound

of 1.8 percent. Assuming the treatment is linear, these results suggest that districts in the 90th

percentile would have had per pupil revenues that were between 7.2 to 14.2 percent higher than

districts in the 10th percentile.

Table V also shows that court-ordered reform increased graduation rates across the FLE distri-

18Models that include the FLE poverty quartile-by-year fixed effect, not shown, are nearly identical.
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bution. Seven years after reform, a 10-unit increase in FLE percentile is associated with a 0.85

percentage point increase in graduation rates for the weighted regression. For the unweighted model

the corresponding point estimate is 0.50 percentage points. Assuming linearity, districts in the 90th

percentile would have had graduation rates that were between 4.0 to 6.8 percentage points higher

than districts in the 10th percentile.

V.D. Robustness Checks

The largest threat to internal validity using aggregated data is selective migration. If treatment

induces a change in population and this change in population affects graduation rates, then the

results using aggregate graduation rates will be biased. Such a source of bias would occur if,

for example, parents that value education were more likely to move to areas that experienced

increases in school spending. To test for selective migration, we estimate the continuous version of

our benchmark model on four dependent variables: logarithm of total district enrollment, percent

minority (sum of Hispanic and black population shares within a district), percent of children in

poverty from the Census Bureau’s Small Area Income and Poverty Estimates (SAIPE), and percent

of students receiving special education. If there is evidence of population changes resulting from

treatment, and if these population characteristics are correlated with the outcome variable, there

may be bias. Ex hypothesi, we would assume that our results would be upwardly biased if treatment

decreased the percents of students who are minority, poor, or receiving special education, as these

populations of students have been historically less likely to graduate (Stetser & Stillwell, 2014). Of

course, we cannot test for within demographic sorting, which would occur if students more likely

to graduate within the poor, minority and disabled populations we observe move into high poverty

districts as a result of reform. The inability to test for within composition sorting is a limitation of

our data. Although we only report the continuous treatment effect estimates of reform in Table VI,
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results from our main benchmark model appear in the Appendix.19

Table VI shows that there is no strong evidence of selective migration to treated districts. None of

the point estimates for percent minority are statistically significant, nor are they large in magnitude.

There are some cases in which we obtain significance in terms of children in proverty (SAIPE)

and the percentages of special education students, but these point estimates are positive and not

consistently significant across the treatment years. If anything, the evidence from these models

suggests our point estimates on the effect of reform are downwardly biased, as the demographic

changes indicate an increase, relative to the change across poverty quantile in non-treated states,

in the population of students that have been historically less likely to graduate.

In addition to considering selective migration, we also examine the robustness of our revenues

dependent variable. Prior research suggests that nonlinear transformations of the dependent vari-

able (e.g., taking the natural logarithm of the dependent variable) might produce treatment effect

estimates that are substantially different from the original variable (Lee & Solon, 2011; Solon et al.,

2015). While transformations of the dependent variable do affect the interpretation of the marginal

effect, we should see similar patterns in terms of significance and sign. In Table VI, we find that

weighted results are marginally significant in treatment years 6 and 7. We also find that the un-

weighted estimates are all statistically significant at the 5 percent level. This is the exact same

pattern of significance that appears Table IV, the table of main revenues results. Moreover, all

point estimates are positive across both tables. Appendix Table C.9, which shows estimates for all

FLE quartiles is qualitatively similar in terms of significance and sign to the results in Table IV as

well. Overall, we feel confident that our logarithmic transformation does not jeopardize the validity

of our revenues results.

[Insert Table VI Here]

19Please see Tables C.5, C.6, C.7, and C.8 in Appendix C.
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VI. Conclusion

In this paper, we make both substantive and methodological contributions. Substantively, we

demonstrate that states undergoing Court ordered finance reform in the period 1990-2010 experi-

enced a sizable fiscal shock that primarily affected high poverty districts in the state. This fiscal

shock led to a subsequent change in graduation rates in those states that likewise primarily bene-

fited high poverty districts. The estimation of these effects is largely immune to a variety of model

specifications that vary in how they account for cross-sectional dependence, pre-treatment trends

and a heterogeneous secular trend. These effect sizes are, in turn, robust to changes in demographic

composition, as we observe population composition variables that are fairly stable after reform.

Methodologically, we subject the differences-in-differences estimator to a wide range of specifi-

cation checks, including cross-sectional dependence, correlated random trends, and secular trends.

We efficiently present upper and lower bounds on point estimates for a range of model choices.

Overall, we find that ignoring cross-sectional dependence and assuming a homogenous counterfac-

tual trend do not meaningfully bias results in this application. However, we do observe substantial

bias if we do not model pre-treatment trends at the state-by-poverty quartile. Without account-

ing for pre-treatment trends, effects of reform on graduation rates are insignificant and precisely

estimated.

The provocative results from Jackson et al. (2015) should not be undervalued. They find that

spending shocks resulting from Court order had major effects on a variety of student outcomes,

including adult earnings. The question of whether school spending—a public investment of $700

billion dollar per year—can be causally linked to desirable outcomes has been a foundational ques-

tion in public economics for the past 50 years. We have argued here that it is necessary to replicate

these results using other data sets with better attributes or that have non-overlapping problems.
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Moreover, given the richness of modern panel data sets, researchers are presented with a variety

of plausibly equivalent modeling choices. In the absence of strong priors regarding model spec-

ification, the challenge for applied microeconomists is to efficiently convey the upper and lower

bounds of estimates resulting from model choice. Here, we have shown that the effects of Court

order are consistent and robust on a data set that contains the universe of school districts in the

United States. Moreover, while results are sensitive to model fit, in most cases, point estimates for

graduation rates from the preferred model never diverge by more than 2 percentage points.
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Figures

Figure I: Mean Log Per Pupil Revenues & Graduation Rates, Centered around Timing of Reform
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Population weighted mean log revenues and graduation rates for states undergoing court-ordered finance reform, by
FLE quartile. Averages are for years 1990-2010, centered around first year of court-order. Note that common trends
assumptions are not reflected in this figure, as FLE quartile 4 graduation rates are not estimated relative to FLE
quartile 4 graduation rates in non-treated states. NYCPS excluded.
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Figure II: Change in Log Per Pupil Revenues & Graduation Rates after Court Ruling, FLE Quartile 4, with and without NYCPS
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Notes: Differences-in-differences with treatment effects estimated non-parametrically after reform. Model accounts for district fixed effects (θd), FLE-by-year fixed
effects (δtq), state-by-FLE linear time trends (ψsqt), and a state-level factor (λ′sFt). Left panel corresponds to results for log revenues; right panel to results for
graduation rates. Black lines are for models that include NCYPS; gray lines are for models that exclude NYCPS. Solid lines are for models that include enrollment
as analytic weight; dashed lines are for unweighted models. Unweighted models completely overlap (black and gray dashed lines are not distinguishable). When
NCYPS is removed, point estimates for weighted models are closer to unweighted models.
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Figure III: Model Sensitivity: Changes in Estimates for Log Per Pupil Revenues across Models
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Notes: Point estimate in treatment year t is shown as the difference between preferred model and model m, where model m variables are indicated in the legend.
Point estimates along the x axis greater than zero indicate our preferred model underestimates the effect; greater than zero indicates our preferred model overstates
the effect. Legend shows three parameter changes, delimited by “;”. ST denotes the type of nonparametric secular trend under consideration: (a) FLE quartile
by year fixed effects or (b) year fixed effects. CRT denotes the type of correlated random trends under consideration: (a) none, corresponding to no CRT; (b)
state by FLE quartile fixed effects interacted with linear time; (c) state fixed effects interacted with linear time; (d) district fixed effects interacted with linear
time. CSD denotes type of cross-sectional dependence adjustment: (a) 0, which implies no factor structure; (b) 1, which is a 1 factor model; (c) 2, which is a 2
factor model; or (d) 3, which is a 3 factor model. Bracketed numbers indicate the column location of point estimates for model m in Tables C.1 and C.2
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Figure IV: Model Sensitivity: Changes in Estimates for Graduation Rates across Models
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Notes: Point estimate in treatment year t is shown as the difference between preferred model and model m, where model m variables are indicated in the legend.
Point estimates along the x axis greater than zero indicate our preferred model underestimates the effect; greater than zero indicates our preferred model overstates
the effect. Legend shows three parameter changes, delimited by “;”. ST denotes the type of nonparametric secular trend under consideration: (a) FLE quartile
by year fixed effects or (b) year fixed effects. CRT denotes the type of correlated random trends under consideration: (a) none, corresponding to no CRT; (b)
state by FLE quartile fixed effects interacted with linear time; (c) state fixed effects interacted with linear time; (d) district fixed effects interacted with linear
time. CSD denotes type of cross-sectional dependence adjustment: (a) 0, which implies no factor structure; (b) 1, which is a 1 factor model; (c) 2, which is a 2
factor model; or (d) 3, which is a 3 factor model. Bracketed numbers indicate the column location of point estimates for model m in Tables C.3 and C.4
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Tables

Table I: Adequacy Era Court-Ordered Finance Reform Years

State Year of 1st Case

Name Overturn Name

Alaska 2009 Moore v. State

Kansas 2005 Montoy v. State (Montoy II)

Kentucky 1989 Rose v. Council for Better Education

Massachusetts 1993 McDuff v. Secretary of Executive Office of Education

Montana 2005 Columbia Falls Elementary School District No. 6 v. Montana

North Carolina 2004 Hoke County Board of Education v. North Carolina

New Hampshire 1997 Claremont School District v. Governor

New Jersey 1997 Abbott v. Burke (Abbott IV)

New York 2003 Campaign for Fiscal Equity, Inc. v. New York

Ohio 1997 DeRolph v. Ohio (DeRolph I)

Tennessee 1995 Tennessee Small School Systems v. McWherter (II)

Wyoming 1995 Campbell County School District v. Wyoming (Campbell II)

Notes: The table shows the first year in which a state’s education finance system was overturned on adequacy
grounds; we also provide the name of the case. The primary source of data from this table is Corcoran & Evans
(2008). We have updated their table with information provided by ACCESS, Education Finance Litigation: http:

//schoolfunding.info/.
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Table II: Descriptive Statistics for Outcome Variables

Weighted Unweighted

Mean SD Mean SD

Graduation Rates .77 [.15] .82 [.14]

Log Revenues 8.94 [.26] 8.97 [.29]

Total Revenues 7950.2 [2352.12] 8224.31 [2782.13]

Percent Minority .32 [.3] .16 [.23]

Percent Black .17 [.22] .08 [.17]

Percent Hispanic .15 [.22] .08 [.16]

Percent Special Education .12 [.05] .13 [.05]

Percent Child Poverty .16 [.1] .16 [.09]

Log Enrollment 9.43 [1.62] 7.4 [1.25]

Notes: This table provides means and standard deviations for the outcome variables used in this paper. Summary
statistics shown here that are weighted use the district enrollment across the sample.
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Table III: States Exiting from Treatment Status

States Treatment Year

N/A 1

AK 2

AK 3

AK 4

AK 5

AK, KS 6

AK, KS, NC 7

AK, KS, NC, NY 8

AK, AR, KS, NC, NY 9

AK, AR, KS, NC, NY 10

AK, AR, KS, NC, NY 11

AK, AR, KS, NC, NY 12

AK, AR, KS, NC, NY 13

AK, AR, KS, NC, NY 14

Notes: This table lists states that no longer contribute treatment information in year t of the dynamic treatment
response period. This occurs for states that were treated relatively late in the panel of data that is available. For
example, our data set ends in 2009, and Table I shows that Kansas had their system overturned in 2005. Thus,
Kansas contributes to the identification of the treatment response in treatment years 1 through 5, corresponding to
2005 to 2009, inclusive. It does not contribute to treatment years 6 through 14.
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Table IV: Change in Log Per Pupil Revenues, by Free Lunch Eligible Quartile and Quantile

Weighted Unweighted

Treatment Year FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont

1 .029 ** -.004 .019 .015 .00001 .018 .008 .008 .004 .00054 *

[.011] [.034] [.017] [.012] [.00019] [.011] [.009] [.01] [.011] [.00023]

2 .054 ** .032 .03 .046 * .00029 .032 + .027 .014 .018 .0007 *

[.017] [.027] [.021] [.022] [.00025] [.017] [.017] [.016] [.02] [.00028]

3 .042 * .013 .031 .044 .00014 .029 + .028 + .022 .041 .00097 **

[.019] [.041] [.026] [.028] [.00032] [.015] [.015] [.019] [.029] [.0003]

4 .058 * .034 .059 * .06 + .00036 .046 ** .045 ** .045 + .056 .00146 ***

[.023] [.046] [.03] [.032] [.00035] [.017] [.017] [.026] [.034] [.0003]

5 .081 ** .057 .063 + .059 .00033 .036 .044 .035 .034 .00137 **

[.025] [.042] [.035] [.04] [.0004] [.026] [.026] [.036] [.037] [.00043]

6 .119 *** .106 ** .089 * .091 * .0007 * .049 + .053 * .041 .033 .0016 **

[.035] [.04] [.038] [.044] [.00035] [.027] [.026] [.031] [.032] [.00054]

7 .127 ** .116 * .108 * .119 * .00092 * .054 .058 + .041 .038 .00183 **

[.041] [.057] [.048] [.055] [.00046] [.033] [.032] [.038] [.043] [.00056]

r-squared .999 .999 .999 .999 .999 .894 .894 .894 .894 .887

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), FLE-by-year fixed effects (δtq), state-by-FLE linear time trends (ψsqt), and a state-level factor (λ′sFt). FLE quartiles are indexed by FLE
∈ 1, 2, 3, 4. Column “FLE Cont” corresponds to models in which FLE-by-year fixed effects are substituted for year fixed effects and the additional control variable
year-by-FLE percentile (δtQ) is included. Point estimates for continuous model are interpreted as change in revenues for 1-unit change in poverty percentile rank
within a state, relative to change in percentile rank in states without Court order. All standard errors are clustered at the state level. (Significance indicated
+ < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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Table V: Change in Graduation Rates, by Free Lunch Eligible Quartile and Quantile

Weighted Unweighted

Treatment Year FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont

1 .003 .015 *** .008 .013 * .00018 ** .006 .013 *** .014 ** .012 * .00016 **

[.006] [.004] [.008] [.006] [.00006] [.004] [.003] [.005] [.006] [.00005]

2 .005 .002 .001 .03 ** .00025 ** .005 .013 + .009 .019 ** .00018 *

[.009] [.006] [.009] [.009] [.00008] [.005] [.007] [.006] [.007] [.00007]

3 -.003 .003 .001 .061 ** .00051 ** .003 .016 * .008 .024 ** .00023 *

[.008] [.01] [.007] [.019] [.00017] [.005] [.007] [.01] [.009] [.00009]

4 .013 .019 * .021 * .061 *** .00065 *** .015 * .032 ** .025 * .034 ** .00043 **

[.01] [.008] [.01] [.013] [.00011] [.008] [.011] [.01] [.013] [.00014]

5 .013 .017 * .02 + .07 *** .00072 *** .012 .031 ** .027 * .041 ** .00049 ***

[.014] [.009] [.011] [.016] [.00013] [.009] [.01] [.012] [.015] [.00015]

6 .012 .019 .024 * .085 *** .00088 *** .013 + .033 ** .032 * .05 ** .00059 ***

[.013] [.012] [.011] [.019] [.00017] [.007] [.013] [.016] [.018] [.00017]

7 -.009 .01 .016 .084 *** .00085 *** .008 .03 .021 .047 * .00052 *

[.015] [.016] [.015] [.023] [.00021] [.01] [.018] [.021] [.023] [.00021]

r-squared .999 .999 .999 .999 .999 .573 .573 .573 .573 .573

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), FLE-by-year fixed effects (δtq), state-by-FLE linear time trends (ψsqt), and a state-level factor (λ′sFt). FLE quartiles are indexed by FLE
∈ 1, 2, 3, 4. Column “FLE Cont” corresponds to models in which FLE-by-year fixed effects are substituted for year fixed effects and the additional control variable
year-by-FLE percentile (δtQ) is included. Point estimates for continuous model are interpreted as change in graduation rates for 1-unit change in poverty percentile
rank within a state, relative to change in percentile rank in states without Court order. All standard errors are clustered at the state level. (Significance indicated
+ < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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Table VI: Robustness Check: Preferred Model Specification - Change in Demographic Characteristics Resulting from Court Order

Log Enroll Percent Minority Percent SAIPE Percent Sped Total Revenues

Treatment Year Unweighted Weighted Unweighted Weighted Unweighted Weighted Unweighted Weighted Unweighted

1 -.00012 .00001 0 .00022 ** .00012 * .0004 .00038 .18717 6.27757 *

[.00007] [.00005] [.00002] [.00008] [.00006] [.00027] [.00023] [2.00267] [3.00265]

2 0 .00005 .00001 .00006 -.00003 .00046 .00044 + 3.00714 7.1655 *

[.00007] [.00006] [.00003] [.00011] [.0001] [.00029] [.00025] [2.5773] [2.93854]

3 .00008 .00002 .00001 .00009 -.00002 .00031 .00026 1.75417 9.93939 **

[.00011] [.00007] [.00004] [.00006] [.00005] [.00033] [.00029] [3.41087] [3.47845]

4 .00013 .00003 .00002 .00016 * .00005 .00039 .00027 4.32547 15.0462 ***

[.00013] [.00009] [.00004] [.00007] [.00008] [.00023] [.00017] [4.26495] [3.92201]

5 .00014 .00009 .00006 .00007 .00003 .00041 + .00028 4.2002 14.5479 **

[.00017] [.00008] [.00005] [.00008] [.00005] [.00023] [.00017] [5.00702] [5.23225]

6 .00014 .0001 .00005 .00012 .00002 .00049 + .00033 8.91194 + 18.25232 *

[.00019] [.00008] [.00005] [.00008] [.00007] [.00028] [.00021] [4.75711] [7.54563]

7 .0001 .00008 .00004 .00008 .00004 .00046 .00032 11.43805 + 20.3912 **

[.00021] [.0001] [.00006] [.00014] [.00012] [.0003] [.00022] [6.48416] [7.19182]

r2 .992 .999 .971 .999 .914 .999 .6 .999 .864

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), year fixed effects (δt), state-by-FLE linear time trends (ψsqt), a state-level factor (λ′sFt), and a FLE percentile-by-year fixed effect (δtQ). Point
estimates are interpreted as change in dependent variable per 1-unit change in poverty percentile rank within a state, relative to change in percentile rank in
states without Court order. All standard errors are clustered at the state level. (Significance indicated + < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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Appendices

A Data Appendix

Our data set is the compilation of several public-use surveys that are administered by the National

Center for Education Statistics and the U.S. Census Bureau. We construct our analytic sample

using the following data sets: Local Education Agency (School District) Finance Survey (F-33);

Local Education Agency (School District) Universe Survey; Local Education Agency Universe

Survey Longitudinal Data File: 1986-1998 (13-year); Local Education Agency (School District)

Universe Survey Dropout and Completion Data; and Public Elementary/Secondary School Universe

Survey. Web links to each of the data sources are listed below:

Note: All links last accessed June 2015.

Local Education Agency Finance Survey (F-33)

Source: https://nces.ed.gov/ccd/f33agency.asp

Local Education Agency Universe Survey

Source: https://nces.ed.gov/ccd/pubagency.asp

Local Education Agency Universe Survey Longitudinal Data File (13-year)

Source: https://nces.ed.gov/ccd/CCD13YR.ASP

Local Education Agency Universe Survey Dropout and Completion Data

Source: https://nces.ed.gov/ccd/drpagency.asp

Public Elementary/Secondary School Universe Survey Data

Source: https://nces.ed.gov/ccd/pubschuniv.asp

We construct total real revenues per student, our first outcome of interest, using the F-33 survey,
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where total revenues is the sum of federal, local, and state revenues in each district.20 We divide

this value by the total number of students in the district and deflate by the US CPI, All Urban

Consumers Index to convert the figure to year 2000 dollars. Because of large outliers in the F-33

survey, we replace with missing values observations with real total revenues per student that are

either 1.5 times larger than the 95th percentile or 0.5 times smaller than the 5th percentile of

per-student total revenues within a state. We do this to prevent large outliers from driving our

results.21

Our measure of graduation rates is a combination of data from the Local Education Agency

(School District) Universe Survey, the Public Elementary/Secondary School Universe Survey, and

the Local Education Agency (School District) Universe Survey Dropout and Completion Data.

From the school-level file, we extract the number of 8th graders in each school, and we aggregate

these school-level data to obtain district-level data in each year. From the Local Education Agency

data files we construct a time series of total diploma recipients. Data on total diploma recipients

was not part of the Local Education Agency universe files as of academic year 1997-98, so beginning

with that year, we use the the Dropout and Completion public-use files to obtain the diploma data.

We calculate the graduation rate as the total number of diploma recipients in year t as a share of

the number of 8th graders in year t − 4, a measure which Heckman & LaFontaine (2010) shows

is not susceptible to the downward biased caused by using lagged 9th grade enrollment in the

denominator. We top-coded the graduation rates, so that they take a maximum value of 1.

20For years 1990-91, 1992-93, and 1993-94, we obtained district-level data from Kforce Government Solutions, Inc.
These data are public-use files.

21The outlier adjustment described above has been used in other studies; for example, see Murray, Evans, & Schwab
(1998). We generally find that outliers are usually found in districts with very small enrollment.
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B Additional Figures
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Figure B.1: New York City Public Schools Potential Mediators & Outcomes
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NYCPS is the largest district in the United States, and it was also demonstrably improving in many ways during
this period. Here, we plot standardized beta coefficients for various outcomes of interest. These are standardized to
be mean zero with standard deviation one for NYCPS across the entire time period. Graduation rates and teacher
salaries increased after 2003, the year New York had its first court ruling. Enrollment, percent poverty, class size and
percent minority decreased during this period. All of these potential mechanisms for improving graduation rates are
intended to be controlled for in a differences-in-differences framework through the inclusion of year dummies.
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Table C.1: Log Per Pupil Revenues Results, Model Sensitivity Specifications, Weighted Least Squares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 .024 .034 .004 .015 .017 .001 .05 .013 .033 .03 .03 -.003 .056 .019 .03
[.012] [.014] [.011] [.013] [.012] [.012] [.018] [.012] [.015] [.012] [.014] [.013] [.018] [.01] [.014]

2 .043 .047 .018 .038 .043 .018 .068 .032 .047 .051 .044 .013 .077 .041 .044
[.017] [.018] [.02] [.021] [.021] [.022] [.024] [.02] [.018] [.017] [.017] [.022] [.024] [.019] [.018]

3 .071 .076 .041 .067 .074 .04 .101 .055 .075 .08 .072 .033 .11 .065 .071
[.024] [.019] [.029] [.028] [.024] [.03] [.023] [.026] [.02] [.024] [.018] [.032] [.022] [.026] [.019]

4 .098 .107 .056 .087 .092 .055 .135 .069 .105 .109 .101 .047 .145 .08 .101

[.024] [.018] [.034] [.033] [.031] [.037] [.025] [.033] [.019] [.025] [.018] [.04] [.025] [.034] [.018]
5 .083 .093 .034 .072 .082 .031 .125 .045 .091 .095 .087 .02 .138 .057 .086

[.029] [.026] [.037] [.036] [.034] [.041] [.034] [.037] [.027] [.03] [.026] [.044] [.034] [.037] [.027]
6 .102 .103 .033 .075 .09 .027 .144 .043 .101 .119 .1 .017 .161 .06 .099

[.022] [.038] [.032] [.034] [.036] [.041] [.044] [.036] [.04] [.021] [.036] [.043] [.042] [.037] [.037]
7 .123 .121 .038 .087 .118 .027 .168 .043 .118 .139 .115 .013 .184 .059 .114

[.019] [.039] [.043] [.045] [.05] [.058] [.045] [.054] [.04] [.018] [.036] [.06] [.043] [.055] [.038]
Weight

Yes

No X X X X X X X X X X X X X X X

Fixed Effect

FLE-Year X X X X X X X X X

Year X X X X X X

CRT

None X X

State-FLE X X X X X

State-FLE^2 X X

State X X

State^2 X X

District X X

Factor

0 X X X X X X X X X X X X

1 X

2 X

3 X

Treatment Year Log Per Pupil Revenues, Unweighted

Preferred model highlighted. Point estimates and standard errors, indicated by brackets, are shown for various model specifications. Model choice is indicated in
bottom of panel. We permute parameters using weights (yes/no), fixed effects (FLE-by-year/year), correlated random trends (none/state-by-FLE/state-by-FLE
squared/state/state squared/district), and factors (0/1/2/3). Not all combinations are available.

49



Table C.2: Log Per Pupil Revenues Results, Model Sensitivity Specifications, OLS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 .028 .026 .015 .019 .02 .01 .048 .02 .027 .032 .025 .005 .051 .021 .026
[.01] [.013] [.012] [.016] [.016] [.009] [.017] [.011] [.014] [.009] [.013] [.01] [.018] [.01] [.014]

2 .056 .05 .046 .049 .052 .034 .08 .05 .051 .061 .05 .029 .083 .053 .051
[.013] [.019] [.022] [.024] [.023] [.02] [.024] [.019] [.02] [.013] [.022] [.02] [.025] [.019] [.023]

3 .055 .049 .044 .049 .047 .029 .083 .046 .05 .066 .054 .027 .092 .055 .055

[.017] [.022] [.028] [.033] [.031] [.026] [.026] [.025] [.024] [.016] [.022] [.027] [.026] [.024] [.023]
4 .079 .073 .06 .069 .063 .045 .11 .061 .075 .092 .078 .043 .121 .071 .08

[.017] [.024] [.032] [.04] [.039] [.03] [.028] [.031] [.025] [.015] [.021] [.032] [.027] [.029] [.022]
5 .074 .067 .059 .071 .059 .031 .11 .052 .07 .09 .076 .03 .124 .066 .078

[.021] [.03] [.04] [.052] [.047] [.039] [.035] [.038] [.032] [.021] [.029] [.041] [.035] [.037] [.031]
6 .102 .092 .091 .105 .076 .047 .142 .071 .095 .121 .104 .048 .158 .089 .107

[.018] [.037] [.044] [.061] [.054] [.045] [.046] [.045] [.039] [.02] [.035] [.046] [.046] [.044] [.037]
7 .129 .115 .119 .128 .103 .059 .174 .09 .119 .154 .133 .064 .195 .114 .137

[.015] [.036] [.055] [.084] [.076] [.065] [.047] [.063] [.038] [.016] [.034] [.067] [.047] [.063] [.036]
Weight

Yes X X X X X X X X X X X X X X X

No

Fixed Effect

FLE-Year X X X X X X X X X

Year X X X X X X

CRT

None X X

State-FLE X X X X X

State-FLE^2 X X

State X X

State^2 X X

District X X

Factor

0 X X X X X X X X X X X X

1 X

2 X

3 X

Treatment Year Log Per Pupil Revenues, Weighted

Preferred model highlighted. Point estimates and standard errors, indicated by brackets, are shown for various model specifications. Model choice is indicated in
bottom of panel. We permute parameters using weights (yes/no), fixed effects (FLE-by-year/year), correlated random trends (none/state-by-FLE/state-by-FLE
squared/state/state squared/district), and factors (0/1/2/3). Not all combinations are available.
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Table C.3: Graduation Rates Results, Model Sensitivity Specifications, Weighted Least Squares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -0.013 0.02 0.013 0.01 0.013 0.018 0.002 0.001 0.019 -0.01 0.02 0.019 0.005 0.004 0.018

[.009] [.009] [.006] [.007] [.009] [.012] [.007] [.008] [.009] [.008] [.006] [.01] [.005] [.005] [.006]

2 -0.01 0.037 0.03 0.026 0.029 0.03 0.013 0.012 0.036 -0.008 0.033 0.031 0.014 0.012 0.033

[.01] [.012] [.009] [.01] [.012] [.019] [.007] [.012] [.012] [.011] [.009] [.016] [.006] [.01] [.009]

3 0.021 0.077 0.061 0.056 0.052 0.063 0.048 0.045 0.076 0.021 0.071 0.063 0.048 0.044 0.07

[.02] [.017] [.019] [.021] [.015] [.021] [.014] [.017] [.017] [.022] [.017] [.018] [.016] [.018] [.017]

4 0.009 0.074 0.061 0.055 0.048 0.058 0.042 0.042 0.074 0.008 0.066 0.057 0.04 0.039 0.065

[.01] [.018] [.013] [.013] [.018] [.035] [.01] [.023] [.019] [.011] [.014] [.031] [.008] [.02] [.014]

5 0.017 0.091 0.07 0.065 0.054 0.063 0.056 0.052 0.09 0.017 0.083 0.066 0.055 0.051 0.082

[.014] [.017] [.016] [.017] [.02] [.04] [.01] [.025] [.018] [.014] [.013] [.035] [.01] [.022] [.014]

6 0.024 0.11 0.085 0.079 0.068 0.071 0.07 0.065 0.108 0.027 0.103 0.078 0.072 0.066 0.101

[.02] [.019] [.019] [.02] [.024] [.049] [.013] [.029] [.019] [.021] [.015] [.043] [.013] [.028] [.015]

7 0.018 0.115 0.084 0.077 0.062 0.062 0.072 0.064 0.113 0.023 0.107 0.073 0.075 0.066 0.106

[.024] [.02] [.023] [.025] [.026] [.057] [.015] [.03] [.021] [.023] [.018] [.05] [.016] [.032] [.018]

Weight

Yes X X X X X X X X X X X X X X X

No

Fixed Effect

FLE-Year X X X X X X X X X

Year X X X X X X

CRT

None X X

State-FLE X X X X X

State-FLE^2 X X

State X X

State^2 X X

District X X

Factor

0 X X X X X X X X X X X X

1 X

2 X

3 X

Treatment Year Graduation Rates, Unweighted

Preferred model highlighted. Point estimates and standard errors, indicated by brackets, are shown for various model specifications. Model choice is indicated in
bottom of panel. We permute parameters using weights (yes/no), fixed effects (FLE-by-year/year), correlated random trends (none/state-by-FLE/state-by-FLE
squared/state/state squared/district), and factors (0/1/2/3). Not all combinations are available.
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Table C.4: Graduation Rates Results, Model Sensitivity Specifications, OLS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 -0.001 0.016 0.012 0.014 0.008 0.021 0.012 0.016 0.016 -0.004 0.019 0.022 0.009 0.012 0.019

[.007] [.008] [.006] [.007] [.006] [.01] [.006] [.007] [.009] [.007] [.009] [.011] [.006] [.007] [.009]

2 -0.004 0.022 0.019 0.021 0.01 0.029 0.015 0.021 0.021 -0.009 0.023 0.029 0.01 0.015 0.023

[.011] [.01] [.007] [.008] [.01] [.014] [.007] [.009] [.01] [.012] [.009] [.014] [.006] [.009] [.009]

3 0.003 0.033 0.024 0.026 0.011 0.041 0.025 0.029 0.033 -0.004 0.034 0.04 0.018 0.023 0.034

[.012] [.011] [.009] [.009] [.01] [.018] [.008] [.012] [.011] [.012] [.01] [.019] [.007] [.012] [.01]

4 0.007 0.042 0.034 0.035 0.012 0.053 0.033 0.042 0.042 0 0.044 0.053 0.026 0.035 0.044

[.012] [.017] [.013] [.014] [.016] [.028] [.013] [.018] [.018] [.012] [.017] [.029] [.012] [.019] [.017]

5 0.016 0.055 0.041 0.043 0.017 0.065 0.045 0.053 0.055 0.008 0.058 0.066 0.038 0.046 0.057

[.013] [.019] [.015] [.015] [.017] [.034] [.013] [.022] [.02] [.012] [.018] [.035] [.013] [.022] [.019]

6 0.022 0.069 0.05 0.051 0.016 0.076 0.056 0.063 0.068 0.016 0.075 0.08 0.051 0.058 0.074

[.013] [.022] [.018] [.017] [.016] [.045] [.016] [.03] [.023] [.013] [.021] [.045] [.016] [.03] [.022]

7 0.015 0.068 0.047 0.046 0.008 0.075 0.055 0.062 0.068 0.01 0.076 0.08 0.05 0.057 0.075

[.013] [.027] [.023] [.021] [.018] [.056] [.019] [.037] [.028] [.013] [.026] [.056] [.02] [.037] [.027]

Weight

Yes

No X X X X X X X X X X X X X X X

Fixed Effect

FLE-Year X X X X X X X X X

Year X X X X X X

CRT

None X X

State-FLE X X X X X

State-FLE^2 X X

State X X

State^2 X X

District X X

Factor

0 X X X X X X X X X X X X

1 X

2 X

3 X

Treatment Year Graduation Rates, Weighted

Preferred model highlighted. Point estimates and standard errors, indicated by brackets, are shown for various model specifications. Model choice is indicated in
bottom of panel. We permute parameters using weights (yes/no), fixed effects (FLE-by-year/year), correlated random trends (none/state-by-FLE/state-by-FLE
squared/state/state squared/district), and factors (0/1/2/3). Not all combinations are available.
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Table C.5: Robustness: Log Enrollment, Preferred Model

Weighted Unweighted

Treatment Year FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont

1 -.012 ** -.01 -.015 + -.008 -.00012

[.004] [.008] [.009] [.005] [.00007]

2 -.011 * -.01 -.011 .001 0

[.006] [.009] [.007] [.005] [.00007]

3 -.016 + -.007 -.012 .006 .00008

[.008] [.016] [.013] [.014] [.00011]

4 -.021 -.012 -.013 .009 .00013

[.013] [.02] [.018] [.017] [.00013]

5 -.025 -.015 -.017 .008 .00014

[.017] [.025] [.022] [.02] [.00017]

6 -.034 -.024 -.025 .01 .00014

[.021] [.028] [.025] [.022] [.00019]

7 -.044 + -.033 -.035 .005 .0001

[.024] [.032] [.028] [.026] [.00021]

r-squared .992 .992 .992 .992 .992

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), FLE-by-year fixed effects (δtq (or deltat for continuous models), state-by-FLE linear time trends (ψsqt), a state-level factor (λ′sFt), and, in
the case of continuous models, a FLE percentile-by-year fixed effect (δtQ). Point estimates are interpreted as change in dependent variable per 1-unit change in
poverty percentile rank within a state, relative to change in percentile rank in states without Court order. All standard errors are clustered at the state level.
(Significance indicated + < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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Table C.6: Robustness: Percent Minority, Preferred Model

Weighted Unweighted

Treatment Year FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont

1 -.004 + .003 .003 -.004 .00001 -.002 * .001 0 -.001 0

[.002] [.002] [.003] [.005] [.00005] [.001] [.001] [.001] [.001] [.00002]

2 -.009 * -.001 .002 .004 .00005 -.002 + -.001 0 .002 .00001

[.005] [.002] [.003] [.004] [.00006] [.001] [.001] [.001] [.002] [.00003]

3 -.013 -.004 .002 .001 .00002 -.002 -.001 0 .002 .00001

[.009] [.005] [.005] [.003] [.00007] [.002] [.002] [.002] [.002] [.00004]

4 -.011 -.004 .006 0 .00003 -.002 -.001 .002 .003 .00002

[.01] [.006] [.006] [.004] [.00009] [.003] [.003] [.003] [.002] [.00004]

5 -.005 .004 .01 * 0 .00009 0 .002 .005 + .005 * .00006

[.005] [.003] [.004] [.004] [.00008] [.002] [.002] [.003] [.002] [.00005]

6 -.008 .004 .013 * 0 .0001 -.001 .001 .004 .005 .00005

[.006] [.004] [.005] [.005] [.00008] [.002] [.003] [.003] [.003] [.00005]

7 -.012 .003 .014 * -.004 .00008 -.003 .001 .004 .004 .00004

[.008] [.005] [.007] [.005] [.0001] [.003] [.003] [.004] [.003] [.00006]

r-squared 1 1 1 1 1 .971 .971 .971 .971 .971

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), FLE-by-year fixed effects (δtq (or deltat for continuous models), state-by-FLE linear time trends (ψsqt), a state-level factor (λ′sFt), and, in
the case of continuous models, a FLE percentile-by-year fixed effect (δtQ). Point estimates are interpreted as change in dependent variable per 1-unit change in
poverty percentile rank within a state, relative to change in percentile rank in states without Court order. All standard errors are clustered at the state level.
(Significance indicated + < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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Table C.7: Robustness: Percent Child Poverty (SAIPE), Preferred Model

Weighted Unweighted

Treatment Year FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont

1 .012 *** .015 ** .016 *** .02 * .00022 ** .008 * .01 *** .015 *** .009 .00012 *

[.003] [.005] [.004] [.009] [.00008] [.004] [.003] [.003] [.007] [.00006]

2 .005 .002 -.003 .004 .00006 .004 .003 .004 -.004 -.00003

[.004] [.004] [.009] [.011] [.00011] [.005] [.005] [.006] [.01] [.0001]

3 .009 + .008 * .012 * .011 * .00009 .006 .007 .008 -.001 -.00002

[.005] [.004] [.005] [.005] [.00006] [.006] [.006] [.006] [.005] [.00005]

4 .013 * .009 .015 + .028 ** .00016 * .008 .01 .013 .007 .00005

[.006] [.006] [.008] [.008] [.00007] [.008] [.008] [.009] [.008] [.00008]

5 .017 ** .017 ** .02 ** .019 ** .00007 .011 .012 .014 .006 .00003

[.006] [.005] [.007] [.007] [.00008] [.007] [.007] [.01] [.004] [.00005]

6 .024 ** .019 ** .023 ** .032 *** .00012 .01 .011 .016 .009 .00002

[.007] [.007] [.008] [.009] [.00008] [.01] [.01] [.012] [.009] [.00007]

7 .027 ** .022 ** .027 ** .032 + .00008 .013 .014 .021 .011 .00004

[.009] [.008] [.01] [.017] [.00014] [.012] [.012] [.016] [.013] [.00012]

r-squared 1 1 1 1 1 .914 .914 .914 .914 .914

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), FLE-by-year fixed effects (δtq (or deltat for continuous models), state-by-FLE linear time trends (ψsqt), a state-level factor (λ′sFt), and, in
the case of continuous models, a FLE percentile-by-year fixed effect (δtQ). Point estimates are interpreted as change in dependent variable per 1-unit change in
poverty percentile rank within a state, relative to change in percentile rank in states without Court order. All standard errors are clustered at the state level.
(Significance indicated + < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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Table C.8: Robustness: Special Education, Preferred Model

Weighted Unweighted

Treatment Year FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont

1 .024 .02 .022 .033 .0004 .029 + .026 .027 .029 .00038

[.015] [.014] [.016] [.025] [.00027] [.015] [.016] [.016] [.019] [.00023]

2 .027 .027 + .025 .038 .00046 .031 + .031 + .031 + .033 .00044 +

[.018] [.016] [.018] [.027] [.00029] [.018] [.017] [.018] [.02] [.00025]

3 .022 .015 .016 .025 .00031 .022 .019 .019 .02 .00026

[.018] [.018] [.021] [.03] [.00033] [.019] [.019] [.021] [.022] [.00029]

4 .027 * .02 .025 + .029 .00039 .023 * .021 * .023 + .02 .00027

[.013] [.013] [.015] [.023] [.00023] [.01] [.01] [.012] [.015] [.00017]

5 .032 ** .024 * .026 .03 .00041 + .024 * .021 * .022 + .022 .00028

[.012] [.012] [.016] [.024] [.00023] [.01] [.01] [.012] [.015] [.00017]

6 .038 ** .032 * .03 .034 .00049 + .029 * .026 * .026 + .023 .00033

[.014] [.014] [.018] [.029] [.00028] [.012] [.013] [.015] [.018] [.00021]

7 .036 * .03 * .031 .031 .00046 .026 * .025 + .027 .022 .00032

[.015] [.015] [.019] [.031] [.0003] [.012] [.014] [.016] [.019] [.00022]

r-squared 1 1 1 1 1 .601 .601 .601 .601 .6

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), FLE-by-year fixed effects (δtq (or deltat for continuous models), state-by-FLE linear time trends (ψsqt), a state-level factor (λ′sFt), and, in
the case of continuous models, a FLE percentile-by-year fixed effect (δtQ). Point estimates are interpreted as change in dependent variable per 1-unit change in
poverty percentile rank within a state, relative to change in percentile rank in states without Court order. All standard errors are clustered at the state level.
(Significance indicated + < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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Table C.9: Robustness: Total Per Pupil Revenues, Preferred Model

Weighted Unweighted

Treatment Year FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont FLE 1 FLE 2 FLE 3 FLE 4 FLE Cont

1 452 * 219 373 310 * 0.187 211 * 47 47 -30 6.278 *

[242] [382] [265] [169] [2.00267] [94] [70] [101] [122] [3.00265]

2 631 * 393 392 563 * 3.007 355 ** 258 * 100 123 7.166 *

[282] [359] [282] [232] [2.5773] [131] [119] [148] [177] [2.93854]

3 547 260 385 573 * 1.754 354 * 263 * 159 338 9.934 **

[371] [519] [353] [241] [3.41087] [144] [125] [182] [277] [3.47845]

4 782 * 584 760 * 853 ** 4.325 538 *** 425 ** 394 * 503 15.046 ***

[443] [586] [402] [263] [4.26495] [141] [136] [261] [359] [3.92201]

5 1005 * 770 803 * 893 * 4.200 445 * 381 * 246 255 14.548 **

[485] [582] [475] [364] [5.00702] [214] [231] [354] [404] [5.23225]

6 1369 * 1276 * 1061 * 1268 ** 8.91194 + 653 ** 531 ** 388 316 18.252 *

[630] [648] [607] [486] [4.75711] [201] [208] [305] [322] [7.54563]

7 1428 * 1309 * 1167 * 1567 *** 11.43805 + 688 ** 576 * 358 373 20.39 **

[722] [758] [614] [429] [6.48416] [248] [297] [409] [474] [7.19182]

r-squared 1 1 1 1 1 1 1 1 1 0.864

Notes: This table shows point estimates and standard errors for non-parametric heterogeneous differences-in-differences estimator. Model accounts for district
fixed effects (θd), FLE-by-year fixed effects (δtq (or deltat for continuous models), state-by-FLE linear time trends (ψsqt), a state-level factor (λ′sFt), and, in
the case of continuous models, a FLE percentile-by-year fixed effect (δtQ). Point estimates are interpreted as change in dependent variable per 1-unit change in
poverty percentile rank within a state, relative to change in percentile rank in states without Court order. All standard errors are clustered at the state level.
(Significance indicated + < .10, ∗ < .05, ∗∗ < .01, ∗ ∗ ∗ < .001)
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D Technical Appendix: Standard Errors

In this section, we show how to obtain a variety of standard error structures using the estimates of

the factor loadings and common factors that we obtain from the iterative procedure used in Moon

& Weidner (2015). This may be necessary when, for example, the unit of observation is at a lower

level of aggregation than the unit where serial correlation is expected. We thank Martin Weidner

for suggesting this procedure and for providing details about it.

First, we note that the interactive fixed effects (IFE) procedure provides us with a vector of

estimates for λi and Ft. We denote the estimated parameter vectors as λ̂i and F̂t.

The goal is to use these estimates to estimate the model using OLS in a statistical package that

allows for different error structures such as clustered standard errors. We want to estimate the

following equation:

(D.1) Yit = αi + θt +D′itβ + λ′iFt + εit,

where we have λ̂i and F̂t from the IFE procedure. If we perform a first-order Taylor expansion

about λ′iFt, then we can utilize our estimates and obtain the same coefficients on our treatment

indicators using the IFE procedure.

In general, the first-order Taylor expansion for a function of two variables λ and F about the

points λ̂ and F̂ is as follows:

(D.2) f(λ, F ) ≈ f(λ̂, F̂ ) +
∂f

∂λ

∣∣∣
λ=λ̂,F=F̂

(λ− λ̂) +
∂f

∂F

∣∣∣
λ=λ̂,F=F̂

(F − F̂ )

58



In our case, we have f(λ, F ) = λ′iFt. After applying the Taylor expansion, we obtain:

(D.3) λ′iFt ≈ λ′iF̂t + λ̂i
′
Ft − λ̂i

′
F̂t.

Next, we define αi = λ− λ̂ and Ft = θt. Therefore, we obtain:

(D.4) λ′iFt ≈ αiF̂t + λ̂iθt.

The model we can estimate via OLS is

(D.5) Yit = αi + θt +D′itβ + αiF̂t + λ̂iθt + εit,

where the αi and the θt are parameters that are to be estimated. We can easily apply various

standard error corrections to this model in a wide variety of statistics packages.

Proposition D.1. OLS estimation of Equation (D.5) is identical to OLS estimation of Equa-

tion (D.1).

Proof. For this proof, we show that the first order conditions (FOCs) are identical. Thus, the OLS

estimates will also be identical.

To begin, we first simplify notation. We let Xit = αi + θt + Dit. There is no loss of generality

in performing this step, as we can think of estimating the unit-specific fixed effects and the time-

specific fixed using the least-squares dummy variable (LSDV) method.22

Part 1: Obtain FOCs for Equation (D.1)

22In this paper, we actually remove the fixed effects using the within transformation.
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Step 1: Specify the objective function:

minimize
β̂,λ̂i,F̂t

Ψ =
∑
i

∑
t

(yit −X ′itβ̂ − λ̂i
′
F̂t)

2

Step 2: Obtain partial derivatives for each parameter and set them equal to zero

∂Ψ

∂β̂
= −2

[∑
i

∑
t

(yit −X ′itβ̂ − λ̂i
′
F̂t)(Xit)

]
= 0

∂Ψ

∂λ̂i
= −2

[∑
i

∑
t

(yit −X ′itβ̂ − λ̂i
′
F̂t)(F̂t)

]
= 0

∂Ψ

∂F̂t
= −2

[∑
i

∑
t

(yit −X ′itβ̂ − λ̂i
′
F̂t)(λ̂i)

]
= 0

Part 2: Obtain FOCs for Equation (D.5)

Step 1: Specify the objective function:

minimize
β̂,λ̂i,F̂t

Φ =
∑
i

∑
t

(yit −X ′itβ̂ − αiF̂t − λ̂iθt)2
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Step 2: Obtain partial derivatives for each parameter and set them equal to zero

∂Φ

∂β̂
= −2

[∑
i

∑
t

(yit −X ′itβ̂ − αiF̂t − λ̂iθt)(Xit)

]

= −2

[∑
i

∑
t

(yit −X ′itβ̂ − λ̂i
′
F̂t)(Xit)

]
= 0

∂Φ

∂λ̂i
= −2

[∑
i

∑
t

(yit −X ′itβ̂ − αiF̂t − λ̂iθt)(F̂t)

]

= −2

[∑
i

∑
t

(yit −X ′itβ̂ − λ̂i
′
F̂t)(F̂t)

]
= 0

∂Φ

∂F̂t
= −2

[∑
i

∑
t

(yit −X ′itβ̂ − αiF̂t − λ̂iθt)(λ̂i)

]

= −2

[∑
i

∑
t

(yit −X ′itβ̂ − λ̂i
′
F̂t)(λ̂i)

]
= 0

To simplify the FOCs, we use the fact that we had defined αi = λ − λ̂ and Ft = θt. Given that

we evaluate the minimization problem at β̂, λ̂i, and F̂t, αi will be equal to zero. Finally, we can

replace λ̂iθt with λ̂i
′
F̂t. Thus, the FOCs for Equations (D.1) and (D.5) are identical.
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