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This Session

Goal: To illustrate and integrate key concepts

Topics
— Defining variation in program effects
— Detecting and quantifying this variation

Empirical Examples

— A secondary analysis of three MDRC work/welfare studies

(59 sites with 1,176 individuals randomized per site, on average)

— A secondary analysis of the National Head Start Impact Study

(198 sites with 19 individuals randomized per site, on average)

Reference

— Bloom, H.S., S.W. Raudenbush, M.J. Weiss and K. Porter (conditional
acceptance) Journal of Research on Educational Effectiveness.
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Defining Individual Variation in Program Effects



Distribution of Individual Program Effects

Individual potential outcomes

¥:(1) = outcome with treatment

¥:(0) = outcome without treatment

Individual program effect
B; =Y;(1) - ¥;(0)

Population mean program effect

E(B) =E(Y(1) - Y(0))

Population program effect variance

Var(B) = Var(Y(1) — Y(0))

Population program effect distribution = ????



Distribution of Individual Program Effects

(continued)

The fundamental barrier to observing a program effect distribution for
individuals

— One can only observe an outcome with a program or without the program for a given
individual at a given time.

— Hence it is not possible to observe individual program effects

— Therefore one can only infer a distribution of individual program effects based on
assumptions.

The fundamental barrier to estimating a variance of program effects for
individuals

— The effect of a program on an outcome variance is not necessarily the same as the
variance of the program effects.

— To see this, note that:

Yi(1) =Y(0) + B,
Var(Y(1)) = Var(Y(0)) + Var(B) + 2Cov(B,Y(0))

and

Var(Y(1)) — Var(Y(0)) = Var(b) + 2COV(B,Y(0))



Some Implications of Individual Impact Variation
For the National Head Start Impact Study

Cognitive Outcome Measure

Estimated Receptive Early
Parameter Vocabulary = Reading
(PPVT) (WIJ/LW)

Mean Effect Size
For full sample 0.15" 0.16"
For lowest pretest quartile 0.16" 0.17*"
For other sample members  0.08" 0.13*

Individual Residual

outcome variance

(in original units)
Treatment group 545 433
Control group 667" 440"

NOTES: The full sample size varies by outcome from about 3500 to 3700 children and includes
both three and four year olds. The statistical significance of individual estimates is indicated

as *< 10 percent, ** < 5 percent and *** <1 percent. Estimates that differ statistically significantly
across subgroups at the 0.10 level are indicated in bold.
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Defining, Identifying, Estimating and Reporting
Cross-site Variation in Program Effects



A Cross-Site Distribution of Mean Program Effects

Theoretical Model

Level One: Individuals

Yl] = A] + BJTU + el-j

Level Two: Sites

A] =a + aj
where:

Y= the outcome for individual i from site j,

T; = one if individual i from site j was assigned to the program and zero otherwise,

A, = the site j population mean control group outcome,

B, = the site j population mean program effect,

e; = arandom error that varies across individuals with a zero mean and a variance that can
differ between treatment and control group members

B = the cross-site grand mean program effect,

b, = a random error that varies across sites with zero mean and variance Ti=13

a and a; = the cross-site grand mean control group outcome and a random error that varies across sites
with zero mean and variance 72, respectively



Some Important Goals of a Cross-Site Analysis

Goal #1
Estimate the cross-site grand mean program effect
Goal #2
Estimate the cross-site standard deviation of program effects
Goal #3
Estimate the cross-site distribution of program effects
Goal #4

Estimate the difference in mean program effects between two categories
of sites (the simplest possible moderator analysis).

Goal #5
Estimate the mean program effect for each site




Estimating Impact Variation across Randomized Blocks!

Identification strategy

— Randomizing individuals within a “block” to treatment or control
status provides unbiased estimates of the mean program effect for
each block.

— This makes it possible to estimate program effect variation across
blocks.

— Blocks can be studies, sites, cohorts or portions of the preceding.

Important distinctions

— Effects of program assignment vs. effects of program participation

— Variation in effects vs. variation in effect estimates

1 By definition, randomized blocks have subjects randomized within them. When entire blocks are randomized they
typically are called clusters.




Cross-site Variation in Impacts
VS.
Cross-site Variation in Impact Estimates

For Impact Estimation
Var(impact estimates) = Var(impacts) + Var(impact estimation error)

=15 +V

Reliability(impact estimates) = Var(impacts)/Var(impact estimates)
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Figure 1
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Estimation Model:
FIRC

Fixed Site-Specific Intercepts, Random Site-Specific Program Effects and
Separate Level-One Residual Variances for Ts and Cs (When necessary)

Level One: Individuals

}/l]:aj+B]le+Tl]

Level Two: Sites

aj:aj

Why fixed site-specific intercepts?

e To account for cross-site variation in 7_’] and hence the potential for bias in
estimates of 8 and T4 due to a possible correlation between 7_"] and a;



An Alternative Expression
of the Impact Estimation Model

Site-Center All Variables

* This is equivalent to specifying fixed site-specific intercepts after one
accounts for the degrees of freedom lost when site-centering the
dependent variable

Level One: Individuals

Yi=Y;=B(T; - T;) 7

]

Level Two: Sites

Specify a separate level-one residual variance for Ts and Cs
 Removes potential bias in cross-site variance estimates



How Many Level-One Residual Variances to Estimate?

A Cautionary Tale: Using Data from the Head Start Impact Study

— With a separate level-one residual variance for each site there appeared to be a huge
amount of cross-site variation in program effects (which was highly statistically
significant).

— With a single level-one residual variance for all sites and assignment groups there
appeared to be much less cross-site variation in program effects (which was somewhat
statistically significant).

— With a separate level-one residual variance for Ts and Cs the results were similar to
those for a single variance.

Bottom Line

— Estimating too many variances reduces the sample size for each estimate and thereby
increases the uncertainty about those estimates.

— This uncertainty (perhaps counter-intuitively) causes one to understate impact
estimation error variance for each site (V/;) and thereby over-state true cross-site impact

variation (73).



Head Start Impact Study Example Of How Method Matters for
Estimating Cross-Site Variation In Effects of Program Assignment

Sample size: 119 centers, 1,056 children from the 3 year old cohort

Outcome: Woodcock Johnson Letter Word Identification test score
at the end of the first year after random assignment

Issue: Massive difference in results from two different methods for
estimating variation in effects of program assignment

-Method #1: Site centering the treatment indicator for a random Head

Start impact model with data pooled across blocks (a single level-one
residual variance)

-Method #2: A “split sample” model of Head Start impacts by site
combined with a V-Known random-effects meta analysis (a separate level-
one residual variance for each site)



Head Start Impact Study Results
for Two Estimation Methods
(Three-year-old Cohort)

Estimated  Truelmpact  Chi-sqr stat
Estimation Approach Impact Variation (t) fort  P-value

Single centering RE approach 6.071 35.737 125.705  0.296

Split sample + V-known approach 7.746 261.390 421,391 0.000




Key Results to Report From A Cross-Site Analysis
Of Program Effects

Results to report

* Estimated grand mean program effect (8)

* Estimated cross-site standard deviation of program effects (75)

» Estimated cross-site distribution of program effects (Adjusted Empirical
Bayes Estimates)

* Estimated mean program effect for each site (Empirical Bayes Estimates)

* Estimated difference in mean program effects for two categories of sites

(B2 = B1)




Empirical Example:
MDRC’s Welfare-to-Work Studies?

Research Design

— Secondary analysis of individual data from three MDRC multi-
site randomized trials (GAIN, NEWWS and PI)

Study Sample

— 59 local welfare offices with an average of 1,176 randomized
sample members per office (site)

Outcome Measure

— Total earnings (in dollars) during the first two years after random
assignment

1 Bloom, HS., C. J. Hill and J. A. Riccio (2003) “Linking Program Implementation and Effectiveness: Lessons from
a Pooled Sample of Welfare-to-Work Experiments,” Journal of Policy Analysis and Management, 22(4): 551
- 575.



Summary of Welfare-to-Work Parameter Estimates?

Estimated Cross-site Grand Mean Program Effect (B)
— Point estimate = S875
— Estimated standard error = $137
— P-value < 0.001
— 95 percent confidence interval = $606 to S1,144

Estimated Cross-Site Standard Deviation of Program Effects (73)
— Point estimate = $742
— P-value < 0.001
— Asymmetric 95 percent confidence interval = $525 to $1,048

NOTE: Cross-site reliability = 0.497 and o;%/0:2 = 1.09

L From Bloom, Raudenbush, Weiss and Porter (under review).



Cross-Site Distribution of Welfare-to-Work
Program Effects on Total Two-Year Earnings
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Some Important Diagnostics

Assessing the Implications of Uncertainty

— Itis important to assess the implications of uncertainty for interpreting one’s findings about
cross-site variation

— This uncertainty is a function of the study design that produced the findings

Caterpillar Plots

— graphically report confidence intervals of the OLS or Empirical Bayes estimates of the
program effect for each site

Likelihood Profile Graphs

— Superimpose a graph of the likelihood function for t2
— On a graph of the corresponding Empirical Bayes impact estimates for sites



Caterpillar Plot of Empirical Bayes Estimates of Site-Specific
Welfare-to-Work Program Effects
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Caterpillar Plot For Empirical Bayes Estimates of Head Start
Effects on Woodcock Johnson Letter Word Identification Scores
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Likelihood Profile Graph for Empirical Bayes Estimates of
Site-Specific Welfare-to-Work Program Effects
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Profile Likelihood Graph For Empirical Bayes Estimates of Head Start
Effects on Woodcock Johnson Letter Word Identification Scores
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