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Abstract 

Causal mediation analysis decomposes the total effect of a treatment on the outcome into 

an indirect effect transmitted through a focal mediator and a direct effect. Ratio-of-mediator-

probability weighting (RMPW) conveniently estimates these causal effects by adjusting for the 

confounding impact of a large number of pretreatment covariates through propensity score-based 

weighting. A weight is computed as a ratio of two estimated counterfactual probabilities for the 

mediator with respect to the two alternative treatment conditions. The causal effects of interest 

are then estimated when the estimated weight is applied to the sample data. Statistical inferences 

obtained from this two-step estimation procedure are potentially problematic if the estimated 

standard errors of the causal effect estimates do not reflect the sampling uncertainty in the 

estimation of the weights. This technical report extends to RMPW analysis a solution to the two-

step estimation problem by stacking the score functions from both steps. We derive the 

asymptotic variance-covariance matrix for the indirect and direct effect two-step estimators, 

provide simulation results, and illustrate with an application study. Our simulation results 

indicate that the sampling uncertainty in the estimated weights should not be ignored. The 

standard error estimation using the stacking procedure offers a viable alternative to the 

bootstrapped standard error estimation. 

 

Keywords 

Direct effect, indirect effect, m-estimation, mediation analysis, method of moments, ratio-of-

mediator-probability weighting  
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1. Introduction 

Causal mediation analysis through ratio-of-mediator-probability weighting (RMPW), 

developed by Hong and others (Hong, 2010, 2015; Hong, Deutsch, & Hill, 2011, 2015; Hong & 

Nomi, 2012; Lange, Rasmussen, & Thygesen, 2013; Tchetgen Tchetgen & Shpister, 2012), is a 

weighting-based approach to identifying and estimating natural direct and indirect effects that 

compose the total effect of a treatment on the outcome. Huber (2014) and Tchetgen Tchetgen 

(2013) proposed related strategies employing weights that are mathematically equivalent to 

RMPW. All these weighting strategies are aimed at consistently estimating the population 

average potential outcomes that define the average natural direct effect and the average natural 

indirect effect. However, even in an experiment in which the treatment has been randomized, 

typically the mediator values are not randomized under each treatment condition. Therefore, the 

true ratio-of-mediator-probability weights are unknown and must be estimated from the sample 

data. It is well-known that the necessity of estimating weights often affects the variance of 

weighting-based estimators relative to what their variance would be if the true weights could 

somehow be employed (Cameron & Trivedi, 2005, pp.200-202; Wooldridge, 2010, pp. 409-413). 

This article contributes to the literature by deriving and estimating the variance of RMPW 

method of moments (MOM) estimators of natural direct and indirect effects, accounting for the 

use of estimated weights.  

In the causal inference literature, there are several important examples of propensity 

score-based weighting in which, counterintuitively, standard errors of causal effect estimators are 

smaller when applying the estimated weights rather than the true (but typically unknown) 

weights. These include inverse-probability-of-treatment-weighted (IPTW) estimators of the 

average treatment effect and of marginal structural models more generally (see Wooldridge, 
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2010, pp. 922-923, and Robins, Hernan, & Brumback, 2000, p. 554, respectively). This 

seemingly counterintuitive result is in alignment with Rosenbaum’s (1987) observation that, in 

comparison with the true propensity score, the estimated propensity score produces greater 

control of imbalances in the pretreatment covariates between the experimental group and the 

control group in a given sample. For such estimators, conservative statistical inference can be 

obtained by ignoring weight estimation. However, as we show later, this nice property is not 

shared by our RMPW estimators, and inference based on ignoring the reality that the RMPW 

weights must be estimated will sometimes produce downward-biased p-values and overly narrow 

confidence intervals.  

Bootstrapping (Efron & Tibshirani, 1993) has often been recommended as a solution to 

the two-step estimation problem. Applied researchers resort to bootstrapping when analytic 

solutions are unfeasible or are not yet available. However, bootstrapping is computationally 

intensive and may generate unstable results when the sample size is relatively small. The 

statistical properties of bootstrapped standard errors are yet to be examined when applied to 

RMPW-based causal mediation analysis. In this study, we derive the correct large-sample 

standard errors given the necessity of weight estimation and explain how to consistently estimate 

them. For both large and small samples, we compare the inferential accuracy of these standard 

error estimators to the bootstrap standard error estimators as well as to the standard error 

estimators when the estimated weights are mistaken for the true weights.  

We proceed as follows. Section 2 briefly reviews the definition of natural direct and 

indirect effects. Section 3 summarizes the RMPW estimation approach. In Section 4, we derive 

the asymptotic variance of the RMPW estimators, taking into account the need for weight 

estimation. Section 5 discusses variance estimation. We present in Section 6 a simulation study 
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comparing the performance of different methods of variance estimation. In Section 7, we apply 

the proposed variance estimators to the National Evaluation of Welfare-to-Work Strategies 

(NEWWS). Section 8 discusses implications for practice and next steps. Appendices provide 

technical details and describe Stata commands that implement our variance estimators. 

2. Direct and Indirect Effects 

In scientific research, the theoretical mechanism through which a treatment influences an 

outcome typically involves one or more mediators. A mediator is an intermediate outcome that is 

expected to be influenced by the initial treatment and will subsequently influence the final 

outcome. Direct and indirect effects of treatment relate to the extent to which the treatment effect 

on the outcome is mediated by a particular mediator or set of mediators. Consider the the 

simplest case in which there is a single mediator of interest. At one extreme, the effect of a 

treatment on the outcome is transmitted entirely through the mediator such that the treatment has 

no effect on the outcome via any other causal pathways. In this case, there is no direct effect. At 

the other extreme, either the treatment does not change the mediator value or any effect the 

treatment has on the mediator may have no subsequent effect on the outcome. In this case, the 

direct effect is the total effect. In social policy research, for any specified mediator or set of 

mediators, treatments tend to exhibit both direct and indirect effects on outcomes.  

For example, analyzing the data collected from Riverside, California as a subset of the 

experimental data in the National Evaluation of Welfare-to-Work Strategies (NEWWS), Hong, 

Deutsch, and Hill (2011, 2015) examined the impact of a welfare-to-work strategy on the 

psychological well-being of welfare recipients with young children. The intervention emphasized 

and supported labor force participation and threatened sanctions if the participants failed to meet 

the requirements. This was sharply contrasted with the control condition that simply offered cash 
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assistance to welfare recipients. The researchers hypothesized that being assigned at random to 

the experimental condition would likely increase one’s probability of employment. Becoming 

employed under the experimental condition would subsequently reduce depressive symptoms. 

Hence the treatment assignment is expected to generate a desired negative indirect effect on 

maternal depression. They further hypothesized that, without an increase in the probability of 

employment, being assigned to the experimental condition rather than the control condition 

would inadvertently heighten maternal depression, leading to an undesired positive direct effect 

of the treatment on maternal depression. The hypothesized counteracting indirect effect and 

direct effect may provide a theoretical explanation for the zero effect of the total treatment effect 

on maternal depression. 

Below we use T to denote the treatment assignment, M for the mediator, and Y for the 

outcome. In the NEWWS application described above, T indicates whether a welfare recipient 

was assigned to the experimental condition or the control condition; M is employment during the 

period after randomization; and Y is maternal depression at the follow-up. Extending the 

Neyman-Rubin potential outcomes model of treatment effects (Holland, 1986; Neyman, 1923; 

Rubin, 1978), researchers have formally defined the direct and indirect effects that decompose 

the total effect of a treatment on an outcome (Pearl, 2001; Robins & Greenland, 1992). Let T = 1 

if an individual was assigned to the experimental condition; and let T = 0 if the same individual 

was assigned to the control condition instead. Correspondingly, we posit that each individual in 

the population would have two potential intermediate outcomes denoted 𝑀(0) and 𝑀(1). In the 

NEWWS application, the former is a random variable taking value 0 if one is unemployed and 1 

if employed under the control condition; the latter is another random variable representing the 

same individual’s employment status if assigned to the experimental condition. 𝑌�1,𝑀(1)� is the 
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potential outcome (i.e., the potential level of maternal depression) that the individual would 

display if assigned to the experimental condition; and 𝑌�0,𝑀(0)� is the potential outcome that 

the same individual would display if assigned to the control condition. These are commonly 

written as 𝑌(1) and 𝑌(0), respectively, in other causal inference contexts. The difference 

between 𝑌�1,𝑀(1)� and 𝑌�0,𝑀(0)� defines the individual specific total effect of the treatment 

on maternal depression.  

To understand the mediating role of employment, we need to introduce another potential 

outcome 𝑌�1,𝑀(0)� that represents, in the current example, the level of maternal depression that 

one would display if assigned to the experimental condition yet counterfactually experiencing an 

employment status as one would under the control condition. For example, suppose that an 

individual would have a 0.7 probability of being employed if assigned to the experimental 

condition and a 0.4 probability of being employed under the control condition. 𝑌�1,𝑀(0)� is the 

individual’s potential level of depression if assigned to the experimental condition when her 

probability of employment would counterfactually be 0.4 rather than 0.7. The individual-specific 

natural direct effect is 𝑌�1,𝑀(0)� − 𝑌(0,𝑀(0)). This is the treatment effect on maternal 

depression should the treatment fail to change the individual’s employment experience. The 

individual-specific natural indirect effect is 𝑌�1,𝑀(1)� − 𝑌(1,𝑀(0)). This is defined as the 

treatment effect on maternal depression solely attributable to the treatment-induced change in her 

employment experience when the individual is assigned to the experimental condition. In the 

earlier example, it is the change in maternal depression under the experimental condition when 

the individual’s probability of employment is raised from 0.4 to 0.7.  

Causal mediation analysis focuses on identifying and estimating the population average 

natural direct effect  
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𝑁𝑁𝑁 ≡ 𝐸[𝑌�1,𝑀(0)� − 𝑌(0,𝑀(0))]   (1) 

and the population average natural indirect effect 

𝑁𝑁𝑁 ≡ 𝐸[𝑌�1,𝑀(1)� − 𝑌(1,𝑀(0))]    (2) 

Clearly,  

𝑁𝑁𝑁 + 𝑁𝑁𝑁 = 𝐸�𝑌�1,𝑀(1)� − 𝑌�0,𝑀(0)�� = Total Effect. 

According to Pearl (2001), these causal effects are “natural” rather than “controlled” because, 

under each treatment condition, the mediators are allowed to take random values that vary 

naturally across individuals rather than taking fixed values strictly controlled by the 

experimenter. In Robins and Greenland’s (1992) terminology, NDE and NIE are called the “pure 

direct effect” and the “total indirect effect,” respectively. The latter can be further decomposed 

when the researcher wants to know whether the treatment-induced change in the mediator (such 

as an increase in the probability of employment from .4 to .7) would influence the outcome 

differently between the experimental condition and the control condition. 

The above definitions of the causal effects are provided under the simplifying assumption 

that an individual’s potential mediators and potential outcomes are unaffected by other 

individuals’ treatment assignments and mediator value assignments.1 This is related to the Stable 

Unit Treatment Value Assumption (SUTVA) (Rubin, 1980). Yet this framework allows an 

individual’s potential mediator under a given treatment condition to take random rather than 

fixed values. In the above example, the individual whose probability of employment is 0.7 when 

                                                           
1 This assumption would not hold if there is a general equilibrium effect. For example, when employment 
opportunities are limited in a local job market, assigning a greater proportion of welfare applicants to the 
experimental condition will likely generate a greater demand for low-paying positions. As one’s probability of 
employment diminishes, the depression level of an individual who remains unemployed under the experimental 
condition will likely become heightened. Although beyond the scope of the current study, possible spill-overs of 
treatment effects have emerged as an important topic in the causal inference literature (Hong, 2004, 2015; Hong & 
Raudenbush, 2006, 2013; Hudgens & Halloran, 2008; Sobel, 2006). Possible spill-overs of mediator effects are 
particularly relevant to causal mediation analysis (Hong, 2015). 
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assigned to the experimental condition may display a mediator value 𝑀(1) = 1 if an 

employment opportunity becomes available and may display an alternative mediator value 

𝑀(1) = 0 if such an opportunity disappears in the market. Correspondingly, the individual 

assigned to the experimental condition has a 0.7 probability of displaying potential outcome 

𝑌(1,1) and a 0.3 probability of displaying potential outcome 𝑌(1,0).  Hence, when T = 1, the 

individual’s potential outcome  𝑌(1) may not have a stable value; the same can be said of the 

individual’s potential outcome under the control condition 𝑌(0).  

3. RMPW Method of Moments Estimation of Natural Direct and Indirect Effects 

 Here we focus on decomposing the total effect of the treatment on the outcome into a 

natural direct effect and a natural indirect effect defined in (1) and (2). This section outlines the 

RMPW method-of-moments (MOM) estimation of NDE and NIE, which involves the estimation 

of the population average potential outcomes 𝐸�𝑌�1,𝑀(1)��, 𝐸�𝑌�0,𝑀(0)��, and 

𝐸�𝑌�1,𝑀(0)��. Further decomposition of NIE is straightforward and will be addressed in the 

discussion section. For simplicity, we consider a randomized experiment with a binary treatment 

and a binary mediator, although the RMPW MOM strategy can be easily extended to non-

randomized treatment assignments and multivalued mediators (Hong, 2015; Hong & Nomi, 

2012).  

A comprehensive presentation of the rationale of RMPW and the identification 

assumptions has appeared elsewhere (Hong, 2010, 2015; Hong, Deutsch, & Hill, 2011, 2015; 

Lange, Vansteelandt, & Bekaert, 2012). Similar to other related weighting strategies (Huber, 

2014; Tchetgen Tchetgen, 2013; Tchetgen Tchetgen & Shpitser, 2012), the theoretical rationale 

is to equate the distribution of the mediator in the experimental group and that in the control 

group through weighting. Transforming the mediator distribution in the experimental group 
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through weighting then makes possible the identification of 𝐸�𝑌�1,𝑀(0)�� essential to treatment 

effect decomposition. The identification requires the sequential ignorability assumption (Imai et 

al, 2010a, 2010b). Namely, the treatment assignment and the mediator value assignment under 

each treatment can be viewed as randomized within levels of the observed pretreatment 

covariates. This section proceeds under the pretense that the RMPW weights are known. In the 

next section, we consider the realistic but more complicated case where these weights are 

unknown and must be estimated.  

Suppose that a random sample of size n has been drawn from the population of interest. 

The ith participant in the sample has observed data 

𝑂𝑖 = (𝑋𝑖,𝑇𝑖 ,𝑀𝑖,𝑌𝑖), 

where 𝑋𝑖 is a vector of baseline (i.e., pretreatment) covariates; 𝑇𝑖 is the random treatment 

assignment indicator; 𝑀𝑖 is an observed intermediate variable; and 𝑌𝑖 is an observed outcome. 

The ratio-of-mediator probability weight for the ith participant is 

𝑤𝑖 ≡ 𝑤𝑖(𝑀𝑖,𝑋𝑖) = 𝑀𝑖
𝑃(𝑀𝑖 = 1|𝑇𝑖 = 0,𝑋𝑖)
𝑃(𝑀𝑖 = 1|𝑇𝑖 = 1,𝑋𝑖)

+ (1 −𝑀𝑖)
𝑃(𝑀𝑖 = 0|𝑇𝑖 = 0,𝑋𝑖)
𝑃(𝑀𝑖 = 0|𝑇𝑖 = 1,𝑋𝑖)

. 

(3) 

From (3), 

𝐸[𝑤𝑖(𝑀𝑖,𝑋𝑖)| 𝑇𝑖 = 1,𝑋𝑖] = 𝑃(𝑀𝑖 = 1|𝑇𝑖 = 0,𝑋𝑖) + 𝑃(𝑀𝑖 = 0|𝑇𝑖 = 0,𝑋𝑖) = 1, 

which implies that  

𝐸[𝑤𝑖(𝑀𝑖,𝑋𝑖)| 𝑇𝑖 = 1] = 1.     (4) 

We define the shorthand for each population average potential outcome: 

𝜇0 ≡ 𝐸�𝑌�0,𝑀(0)��; 

𝜇∗ ≡ 𝐸�𝑌�1,𝑀(0)��; 
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𝜇1 ≡ 𝐸�𝑌�1,𝑀(1)��. 

These are useful because 

𝑁𝑁𝑁 = 𝜇1 − 𝜇∗, 

𝑁𝑁𝑁 = 𝜇∗ − 𝜇0. 

We now employ standard MOM technology to develop RMPW estimators of NIE and 

NDE.2 MOM estimation is described in Cameron and Trivedi (2005, section pp. 166-168) and is 

a special case of the econometric technique of generalized method of moments (GMM) 

estimation (Cameron & Trivedi, 2005, chapter 6; Hansen, 1982), which it predates.3 Consider the 

following estimating or score functions of observed data and parameters:  

ℎ0𝑖(𝑂𝑖,𝜇) = (𝑌𝑖 − 𝜇)(1 − 𝑇𝑖), 

ℎ∗𝑖(𝑂𝑖,𝜇) = (𝑌𝑖 − 𝜇)𝑤𝑖𝑇𝑖, 

ℎ1𝑖(𝑂𝑖,𝜇) = (𝑌𝑖 − 𝜇)𝑇𝑖. 

These estimating functions satisfy the population moment conditions at the true parameter values: 

𝐸�ℎ0𝑖(𝑂𝑖, 𝜇0)� = 0, 

𝐸�ℎ∗𝑖(𝑂𝑖, 𝜇∗)� = 0, 

𝐸�ℎ1𝑖(𝑂𝑖,𝜇1)� = 0. 

The second moment condition relies on a key result from the past literature on RMPW (Hong, 

2010, 2015; Hong, Deutsch, and Hill, 2011, 2015; Hong & Nomi, 2012), which we refer to as the 

RMPW theorem: 𝜇∗ = 𝐸[𝑤𝑤|𝑇 = 1]. We then have 

                                                           
2 Hong and colleagues (Hong, 2010, 2015; Hong, Deutsch, and Hill, 2015) presented weighted least 
squares estimators of the natural direct and indirect effects, using the RMPW weights. Appendix 1 shows 
that these estimators are equivalent to the MOM estimators developed in this section. 
3 Some authors refer to MOM estimation as “m-estimation” (e.g., Stefanski & Boos, 2002), while others 
reserve the latter term for a class of estimation approaches that include MOM (e.g., Wooldridge, 2010, 
chapter 12). 
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𝐸�ℎ∗𝑖(𝑂𝑖, 𝜇∗)� = 𝐸{𝐸[(𝑌𝑖 − 𝜇∗)𝑤𝑖𝑇𝑖|𝑇𝑖]} 

= 𝑃(𝑇𝑖 = 1)𝐸[(𝑌𝑖 − 𝜇∗)𝑤𝑖|𝑇𝑖 = 1] 

= 𝑃(𝑇𝑖 = 1)(𝐸[𝑌𝑖𝑤𝑖|𝑇𝑖 = 1] − 𝜇∗𝐸[𝑤𝑖|𝑇𝑖 = 1]) 

= 𝑃(𝑇𝑖 = 1)�𝜇∗(1 − 𝐸[𝑤𝑖|𝑇𝑖 = 1])� 

= 0, 

where the next-to-last equality follows from the RMPW theorem and the last equality follows 

from equation (4).  

The parameters 𝜇0, 𝜇∗, and 𝜇1 are respectively estimated by MOM estimators 𝜇̂0, 𝜇̂∗, and 

𝜇̂1 (Cameron & Trivedi, 2005, p. 172) that satisfy the following sample moment conditions 

1
𝑛
� ℎ0𝑖(𝑂𝑖, 𝜇̂0)

𝑛

𝑖=1
= 0,  

1
𝑛
� ℎ∗𝑖(𝑂𝑖, 𝜇̂∗)

𝑛

𝑖=1
= 0, 

1
𝑛
� ℎ1𝑖(𝑂𝑖, 𝜇̂1)

𝑛

𝑖=1
= 0. 

Let 𝑛1 = ∑ 𝑇𝑖𝑛
𝑖=1  and 𝑛0 = ∑ (1 − 𝑇𝑖𝑛

𝑖=1 ) be the number of sampled participants in the 

experimental and control groups, respectively. Solving the estimating equations gives 

𝜇̂0 =
∑ 𝑌𝑖𝑛
𝑖=1 (1 − 𝑇𝑖)

𝑛0
, 

𝜇̂∗ =
∑ 𝑌𝑖𝑤𝑖𝑇𝑖𝑛
𝑖=1
∑ 𝑤𝑖𝑇𝑖𝑛
𝑖=1

, 

𝜇̂1 =
∑ 𝑌𝑖𝑛
𝑖=1 𝑇𝑖
𝑛1

. 
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The variance matrix for these estimators follows from a standard result for MOM 

estimators (Cameron & Trivedi, 2005, p. 174). Let 𝜃0 = (𝜇0, 𝜇∗, 𝜇1)′, 𝜃� be the corresponding 

vector of estimators, and ℎ(2) = �ℎ0 ,ℎ∗ ,ℎ1 �
′
. Then 

√𝑛�𝜃� − 𝜃𝑜�
𝑑
→ 𝑁[0,𝐺𝑜−1𝑆𝑜(𝐺𝑜−1)′], 

where, letting 𝑝 = 𝑃(𝑇 = 1) and 𝑞 = 𝑃(𝑇 = 0), 

𝐺0 = 𝐸 �𝜕ℎ
(2)

𝜕𝜃′
|𝜃0� = −�

𝑞 0 0
0 𝑝 0
0 0 𝑝

�,    (5) 

and 

𝑆0 = 𝐸𝜃0�ℎ
(2)ℎ(2)′�.      (6) 

That is, in sufficiently large samples, 𝜃� is approximately multivariate normally distributed with 

mean 𝜃0 and variance matrix 

𝐺0−1𝑆0(𝐺0′)−1

𝑛
. 

Let 𝑁𝐼𝐸� = 𝜇̂1 − 𝜇̂∗ and 𝑁𝑁𝑁� = 𝜇̂∗ − 𝜇̂0 be estimators of the natural indirect and direct effects. 

Further let 𝑣𝑁𝑁𝑁 = (0,−1,1)′ and 𝑣𝑁𝑁𝑁 = (−1,1,0)′. Then 

𝑁𝑁𝑁� = 𝑣𝑁𝑁𝑁′𝜃� , 

𝑉𝑉𝑉�𝑁𝑁𝑁� � = 𝑣𝑁𝑁𝑁′ 𝑉𝑉𝑉�𝜃��𝑣𝑁𝑁𝐸 , 

𝑁𝑁𝑁� = 𝑣𝑁𝑁𝑁′𝜃�, 

𝑉𝑉𝑉�𝑁𝑁𝑁�� = 𝑣𝑁𝑁𝑁′ 𝑉𝑉𝑉�𝜃��𝑣𝑁𝑁𝑁 .    (7) 

4. Variance of Two-step RMPW MOM Estimators 

The 𝑁𝑁𝑁 and 𝑁𝑁𝑁 estimators presented above are infeasible, as they presuppose 

knowledge of the true RMPW weights.  In practice, though, these weights are not known and 

must be estimated. The resulting estimators, utilizing estimated rather than true weights, are 
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commonly referred to as two-step estimators. In the first step, regression coefficients from 

logistic or probit regressions of binary mediator 𝑀 on baseline covariates 𝑋 are estimated and 

then used to estimate RPMW weights. In the second step, the 𝑁𝑁𝑁 and 𝑁𝑁𝑁 estimators given in 

the previous section are computed, but using the estimated weights from step one rather than the 

unknown true weights. The process of estimating the weights (via logistic regression in the 

discussion that follows) typically must be accounted for in determining the variance matrix of the 

two-step estimators.  We do so, following the approach of Newey (1984), as presented in 

Cameron and Trivedi (2005, pp. 200-202); also see Hansen (1982), Pagan (1986), and 

Wooldridge (2010, pp. 409-413). 

Two logistic regression models are used to estimate the RMPW weights; one model is fit 

to the control group to predict the potential mediator 𝑀(0) and the other is fit to the experimental 

group to predict the potential mediator 𝑀(1).4 We refer to these as mediator models. In essence, 

these are propensity score models for the observed mediator under the two alternative treatment 

conditions. Here we assume that the mediator models are correctly specified and will discuss 

later the implications of one or both of the models being misspecified. 

The logistic regression model with parameters 𝛼 for predicting 𝑀 under the control 

condition is 

𝑃(𝑀𝑖 = 1|𝑇𝑖 = 0,𝑋𝑖) ≡ 𝜇𝑖𝛼 =
1

1 + exp(−𝛼′𝑋𝑖)
. 

The logistic regression model with parameters 𝛽 for predicting 𝑀 under the treatment condition 

is 

                                                           
4 Please refer back to (3), and recall that if 𝑇 = 0, then 𝑀 = 𝑀(0) and if 𝑇 = 1, then 𝑀 = 𝑀(1). Hence, predicting 
𝑀 on the control group is equivalent to predicting 𝑀(0) on this group, and predicting 𝑀 on the treatment group is 
equivalent to predicting 𝑀(1) on this group. Since 𝑀(0) and 𝑀(1) are distinct variables, it is reasonable to fit a 
distinct logistic regression for each. This approach is equivalent to fitting a single logistic regression model for the 
observed mediator 𝑀 that includes an interaction between 𝑇 and every covariate. 
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𝑃(𝑀𝑖 = 1|𝑇𝑖 = 1,𝑋𝑖) ≡ 𝜇𝑖
𝛽 =

1
1 + exp(−𝛽′𝑋𝑖)

. 

The score function for estimating parameters 𝛼 via maximum likelihood estimation (MLE) is 

𝑠𝑖𝛼 = (𝑀𝑖 − 𝜇𝑖𝛼)𝑋𝑖(1 − 𝑇𝑖). 

The score function for parameters 𝛽 via MLE is 

𝑠𝑖
𝛽 = �𝑀𝑖 − 𝜇𝑖

𝛽�𝑋𝑖𝑇𝑖. 

It is a standard result that these score functions have population mean zero at the true regression 

coefficient values 𝛼0 and 𝛽0, respectively. Further, the maximum likelihood estimates are 

obtained by solving 

1
𝑛
� 𝑠𝑖𝛼

𝑛

𝑖=1
= 0, 

1
𝑛
� 𝑠𝑖

𝛽
𝑛

𝑖=1
= 0. 

We will estimate the variance matrix for the estimators of all the parameters 𝜗0 =

(𝛼0,𝛽0,𝜇0, 𝜇∗, 𝜇1)′, where the last three entries in this vector constitute 𝜃0 from the preceding 

section.  Supposing the number of parameters for each logistic model is equal to P, we estimate 

(2P + 3) parameters in total, of which the 2P logistic regression coefficients are not of 

substantive interest and hence are nuisance parameters.  Following Cameron and Trivedi (2005, 

pp. 200-202), we stack these score functions on top of the estimating functions from the previous 

section: 

ℎ2𝑠𝑠𝑠𝑠,𝑖 = �
ℎ𝑖

(1)

ℎ𝑖
(2)� 

ℎ𝑖
(1) = (𝑠𝑖𝛼, 𝑠𝑖

𝛽)′ 

ℎ(2) = �ℎ0 ,ℎ∗ ,ℎ1 �
′
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but where estimating function ℎ∗ is now defined in terms of the logistic regression-modeled 

RMPW weights. That is, the RMPW weights are now 

𝑤𝑖(𝑀𝑖,𝑋𝑖,𝛼,𝛽) = 𝑀𝑖
𝜇𝑖
𝛼

𝜇𝑖
𝛽 + (1 −𝑀𝑖)

1−𝜇𝑖
𝛼

1−𝜇𝑖
𝛽,    (8) 

and 𝑤𝑖(𝑀𝑖 ,𝑋𝑖,𝛼0,𝛽0) is the true RMPW weight. Then ℎ∗ is defined as 

ℎ∗𝑖(𝑂𝑖,𝜇,𝛼,𝛽) = (𝑌𝑖 − 𝜇)𝑤𝑖(𝑀𝑖,𝑋𝑖,𝛼,𝛽)𝑇𝑖, 

and has population mean zero at 𝜇 = 𝜇∗,𝛼 = 𝛼0,𝛽 = 𝛽0. 

Let 𝜗̂ = (𝛼�, 𝛽̂, 𝜇̂0, 𝜇̂∗, 𝜇̂1)′, where the last three entries in this vector constitute 𝜃�. By the 

same MOM result presented in the preceding section5, we have 

√𝑛�𝜗̂ − 𝜗𝑜�
𝑑
→ 𝑁[0,𝐴𝑜−1𝐵𝑜(𝐴𝑜−1)′], 

in which 

𝐵𝑜 = 𝐸�ℎ2𝑠𝑠𝑠𝑠,𝑖ℎ2𝑠𝑠𝑠𝑠,𝑖
′ � = 𝐸 �

ℎ𝑖
(1)ℎ𝑖

(1)′ ℎ𝑖
(1)ℎ𝑖

(2)′
ℎ𝑖

(2)ℎ𝑖
(1)′ ℎ𝑖

(2)ℎ𝑖
(2)′

� ≡ �𝑆11 𝑆12
𝑆21 𝑆0

�, 

𝐴𝑜 = 𝐸 �𝜕ℎ2𝑠𝑠𝑠𝑠,𝑖
𝜕𝜗′ |𝜗0� = 𝐸

⎣
⎢
⎢
⎢
⎡ 𝜕ℎ𝑖

(1)

𝜕(𝛼,𝛽)
𝜕ℎ𝑖

(1)

𝜕𝜕
𝜕ℎ𝑖

(2)

𝜕(𝛼,𝛽)
𝜕ℎ𝑖

(2)

𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

≡ �𝐺11 0
𝐺21 𝐺0

�, 

where 𝑆0 and 𝐺0, as defined in (5) and (6), are elements of the variance matrix for 𝜃� given in the 

preceding section.  

𝐺11 = 𝐸 �
𝜕ℎ𝑖

(1)

𝜕(𝛼,𝛽)
� = 𝐸

⎣
⎢
⎢
⎢
⎡𝜕𝑠𝑖

𝛼

𝜕𝜕
𝜕𝑠𝑖𝛼

𝜕𝜕
𝜕𝑠𝑖

𝛽

𝜕𝜕
𝜕𝜕𝑖

𝛽

𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

= 𝐸

⎣
⎢
⎢
⎢
⎡𝜕𝑠𝑖

𝛼

𝜕𝜕
0

0
𝜕𝜕𝑖

𝛽

𝜕𝜕 ⎦
⎥
⎥
⎥
⎤
, 

                                                           
5 Using the Cameron and Trivedi (2005) stacking approach, 𝜃0 is estimated simultaneously with the nuisance 
parameters 𝛼0 and 𝛽0. Nonetheless, 𝜃� is still referred to as a two-step estimator. Stacking estimating functions was 
also discussed by Stefanski and Boos (2002). 
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𝐺21 = 𝐸 �
𝜕ℎ𝑖

(2)

𝜕(𝛼,𝛽)
� = 𝐸 �

0
𝜕ℎ∗𝑖
𝜕(𝛼,𝛽)

0

� . 6 

Importantly, 𝐺21 relates the estimation of 𝜃 to the coefficients in the mediator models.  

Because 𝜗0 includes nuisance parameters, we are not interested in the large-sample 

variance of 𝜗̂ per se, but rather in the large-sample variance of 𝜃�. Recall that when true RMPW 

weights are (infeasibly) used, this variance matrix is 

𝐺0−1𝑆0(𝐺0′)−1

𝑛
. 

For the feasible two-step estimator 𝜃�, the large-sample variance matrix is (Cameron & Trivedi, 

2005, equation 6.65) 

𝐺0−1𝑆0(𝐺0′)−1

𝑛
+
𝐺0−1{𝐺21[𝐺11−1𝑆11𝐺11−1]𝐺21′ − 𝐺21𝐺11−1𝑆12 − 𝑆21𝐺11−1𝐺21′ }(𝐺0′)−1

𝑛
. 

(9) 

The second term in (9) gives the adjustment to the variance of the infeasible estimator to account 

for the two-step nature of the feasible estimator. The second term is equal to zero if 𝐺21 = 0, 

which holds when the true rather than estimated RMPW weights are used. Pre- and post-

multiplying the variance matrix given in (9) by 𝑣𝑁𝑁𝑁 yields the large-sample variance of the two-

step estimator of the natural indirect effect; pre- and post-multiplying the variance matrix given 

in (9) by 𝑣𝑁𝑁𝑁 yields the large-sample variance of the two-step estimator of the natural direct 

effect. 

5. Estimating the Variance of the Two-step Estimators 

The entries in the 𝐺 and 𝑆 matrices in (9) are unknown population means, and hence the 

variance matrix given in (9) cannot be used directly. To estimate the variance matrix, the 
                                                           
6 The value of 𝐺21 is given in Appendix 3. 
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population mean entries in the matrices in (9) can be replaced by their sample mean analogues. 

The estimating functions, score functions, and their partial derivatives are defined in terms of 

population parameters (e.g., ℎ0𝑖is defined in terms of 𝜇0), and hence any sample means involving 

estimating or score functions or partial derivatives will replace the population parameters with 

their estimates (e.g., 𝜇0 is replaced by 𝜇̂0 in ℎ0𝑖). Per Wooldridge (2010, Lemma 12.1), this 

approach yields a consistent variance estimator. Since the first term in (9) is the variance matrix 

of the infeasible one-step estimator, this also can be consistently estimated via the just-described 

approach. Generalized method of moments commands such as the Stata GMM command can be 

used to estimate stacked MOM estimators (recall MOM is a special case of GMM), and will 

automatically estimate the variance matrix given in (5) (StataCorp, 2013). See Appendix 2 for an 

example of the use of this Stata command. 

These variance estimation procedures can be contrasted with the nonparametric bootstrap 

(Efron & Tibshirani, 1993). For each bootstrap sample, the two logistic regressions predicting 

the mediator probabilities from baseline covariates are fit via MLE, the RMPW weights are 

obtained as functions of the estimated logistic regression coefficients, and the estimates of the 

natural direct and indirect effects are computed using the estimated weights. The sample 

variances of the collection of bootstrap estimates of the direct and indirect effects serve as 

estimates of the variances of the two-step estimators. 

6. Simulation Study 

We turned to Monte Carlo simulations to address three remaining issues regarding the 

two-step estimator: (1) the performance of the two-step estimators of 𝑆𝑆(𝑁𝑁𝑁� ) and 𝑆𝑆(𝐼𝐼𝐼� ) 

with relatively small sample sizes; (2) the direction and magnitude of the bias associated with the 

estimators of 𝑆𝑆(𝑁𝑁𝑁� ) and 𝑆𝑆(𝐼𝐼𝐼� ) that ignore the uncertainty in the RMPW weights; and (3) 
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the performance of the bootstrap method when compared to the two-step method for estimating 

𝑆𝑆(𝑁𝑁𝑁� ) and 𝑆𝑆(𝐼𝐼𝐼� ).  

The derivation in this paper invoked the asymptotic theory to show that the two-step 

method produces consistent estimators of the variances and thus of standard errors of the direct 

and indirect effect estimates. For applied research, it is important to know how reliant these 

estimators’ robustness is on large sample sizes. We generated samples of size 100 and 1,000 and 

estimated bias of the standard error estimators using eight distinct data-generating processes 

described in Appendix 4. In each case, we varied one feature of the model assumptions at a time, 

which led to a different variance of the RMPW weights.  For both sample sizes, and for both 

direct and indirect effects, we found no evidence of bias in the two-step standard error estimators 

in any of the simulated scenarios.  

The standard error estimators that ignore the uncertainty in the RMPW weights were 

biased in some cases. When bias occurred, it led to attenuated estimates in some circumstances 

but inflated estimates in others. In particular, we found scenarios in which ignoring the 

uncertainty in the RMPW weights led to severely attenuated standard error estimates and an 

increased type I error rate. These downward biases could be as high as 16% of the true standard 

error for 𝑆𝑆� (𝑁𝑁𝑁� ) and 86% for 𝑆𝑆� (𝐼𝐼𝐼� ), when the sample size was 1000. This led to true 

coverage rates of nominal 95% confidence intervals as low as 90.5% and 19.8%, respectively. 

Appendix 4 tabulates the parameters that we used for data generation (see Tables 4.1 and 4.2) 

and presents the results that illustrate cases of conservative and liberal standard error estimates 

and coverage (see Tables 4.3 and 4.4). 

We also compared our results to those obtained from a nonparametric bootstrap, which is 

frequently used to incorporate the uncertainty of weight estimation in other causal effect 
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estimators that rely on weights such as IPTW (e.g. Little & Rubin, 2002; Huber, 2014). The 

bootstrap estimator uses 1,000 replications (each re-sampled with replacement), and takes the 

standard deviation of the estimated coefficients across these replications as the standard error of 

the associated estimate. We give Stata code for implementing bootstrap standard errors in 

Appendix 2. As for the two-step estimators of  𝑆𝑆(𝑁𝑁𝑁� ) and 𝑆𝑆(𝐼𝐼𝐼� ), the bootstrap standard 

error estimators are not biased in any of the eight data-generating distributions. However, 

according to our simulation results, the bootstrap standard error estimators on the basis of 1,000 

replications are often less efficient than the two-step standard error estimators. In general, the 

precision of a bootstrap standard error estimator tends to improve as the number of replications 

increases. Yet in practice, the researcher would not have a clear sense, in every unique case, how 

many bootstrap samples are needed for the bootstrap standard error estimator to perform 

comparably to a two-step standard error estimator. The main advantage of the two-step method is 

that it has a closed-form expression, while bootstrapping tends to be much more computationally 

intensive.  

 
7. Application Study 

We applied the two-step estimator to the NEWWS data introduced in section 2 that had 

previously been analyzed by Hong, Deutsch, and Hill (2015). We repeated the analysis in this 

article, using the same data set and variables, but using the two-step variance estimator from 

equation (9) and a bootstrap variance estimator to account for the uncertainty in the RMPW 

weights.  

Analyzing data from the NEWWS Labor Force Attachment program (LFA) in Riverside, 

California, Hong, Deutsch, and Hill (2015) examined whether and how employment mediated 

the program impact on depression in the long run for mothers with young children. Individuals 
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who were assigned at random to the control condition continued to receive public assistance 

from AFDC. Those who were assigned to the LFA program received support and training for job 

searching and were threatened with sanctions for non-compliance in program activities or work. 

The LFA program, however, did not guarantee employment.  

The sample includes 208 LFA group members and 486 control group members with a 

child aged 3 to 5 years. Unemployment Insurance records maintained by the State of California 

provide quarterly administrative data on employment for each participant. All participants were 

surveyed shortly before the randomization and again at the two-year follow-up. The data contain 

a rich set of pre-treatment covariates essential to satisfying the assumptions employed by the 

RMPW theorem.  

Table 1 displays the results from our re-analysis of the NEWWS Riverside data. We 

compare across three different estimation methods: (a) ignoring the uncertainty in the estimated 

weight, (b) applying the proposed two-step estimation procedure, and (c) bootstrapping with 

10,000 replications. The estimated direct effect is about 17% of a standard deviation of the 

outcome. The direct effect estimate indicates that, if the treatment had counterfactually generated 

no impact on employment, maternal depression would have increased. Using the two-step 

estimation procedure, we find the standard error to be 0.86, slightly smaller than the standard 

error estimate 0.87 when the estimation uncertainty in the weight is ignored, and considerably 

smaller than the bootstrapped standard error estimate 0.95. The effect size of the estimated 

indirect effect is about -0.12, which indicates that, if all individuals were hypothetically assigned 

to LFA, the LFA-induced change in employment would produce a reduction in maternal 

depression on average. The standard error estimate obtained from the two-step estimation is 0.48, 

slightly higher than the standard error estimate 0.47 when one ignores the estimation uncertainty 
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in the weight, yet much smaller than the bootstrapped standard error 0.61. In this application, the 

true standard errors are unknown to the researcher. Yet the notable discrepancies between the 

two-step standard error estimates and their corresponding bootstrap standard error estimates 

again raise concerns that these two methods for standard error estimation may not generate 

comparable results. 

Table 1. Standard Errors of Direct and Indirect Effects from NEWWS Analysis Using 

Different Estimators 

 Ignoring uncertainty Two-step method (eq. 9) Bootstrap 

Direct effect    

Coefficient 1.257 1.257 1.257 

Standard error 0.871 0.862 0.959 

t-statistic 1.443 1.458 1.311 

p-value 0.149 0.145 0.190 

    

Indirect effect    

Coefficient -0.879 -0.879 -0.879 

Standard error 0.462 0.472 0.601 

t-statistic -1.903 -1.862 -1.463 

p-value 0.057 0.063 0.143 

Note: The standard deviation of the outcome in the control group is 7.666. 

 

8. Discussion 

The RMPW method decomposes a total treatment effect into a natural direct effect and a 

natural indirect effect through propensity score-based adjustment for mediator value selection. 

This manuscript has focused on how to accurately adjust for the estimation of RMPW weights 

when drawing inferences about natural direct and indirect effects. As we have noted, in other 
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causal inference contexts where weighted estimators are used (e.g., IPTW estimator of the 

average treatment effect), lack of adjustment typically leads to conservative inference. In the 

present context, however, our simulation studies have shown that ignoring the uncertainty in 

weight estimation sometimes leads to conservative inference and at other times liberal inference 

and therefore inflated Type I errors. Because we have not found any definitive way to distinguish 

the data generating mechanisms that lead to conservative vs. liberal inference, we believe that all 

use of RMPW estimators should adjust for weight estimation. 

We have extended to RMPW applications the two-step estimation method that uses the 

“stacking trick.” By stacking the score functions from the two steps of analysis (i.e., propensity 

score estimation in Step 1 and causal effect estimation in Step 2), the two-step estimation 

procedure generates a consistent variance estimator for each causal effect estimator that captures 

the sampling variability in both steps. We derived the asymptotic variance-covariance matrix for 

the two-step estimators. This method is based on large sample theories. Our simulation studies 

have examined the accuracy of the variance estimators obtained from the two-step procedure in 

comparison with the bootstrapped variance estimators for both small and moderate sized samples 

that are commonly seen in real applications. We have shown that the two-step estimation method 

works well in both. Comparing the two-step estimation procedure with the bootstrapping 

procedure that uses 1,000 replications, we find many cases in which the two-step estimator 

appears to be more precise than the bootstrapping estimator (the former often generates a 

relatively narrower range of 95% plausible values and a smaller mean square error). Most 

importantly, the two-step procedure involves considerably less computation than the 

bootstrapping. 
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In many applications, one may prefer the RMPW method to path analysis (Alwin & 

Hauser, 1975; Baron & Kenny, 1986; Duncan, 1966; Wright, 1934) and structural equation 

modeling (SEM) (Bollen, 1989; Jo, 2008; Jöreskog, 1970; MacKinnon, 2008) and to marginal 

structural models (Coffman & Zhong, 2012; Robins, 2003; Robins & Greenland, 1992; 

VanderWeele, 2009) because it avoids possible misspecifications of the mediator-outcome 

relationship and because it can flexibly accommodate treatment-by-mediator interactions. In the 

presence of such an interaction, one may further decompose the natural indirect effect into a 

population average pure indirect effect 𝐸[𝑌�0,𝑀(1)� − 𝑌(0,𝑀(0))] and a population average 

natural treatment-by-mediator interaction effect 𝐸��𝑌�1,𝑀(1)� − 𝑌�1,𝑀(0)�� − [𝑌�0,𝑀(1)� −

𝑌(0,𝑀(0))]�. This further decomposition involves a fourth population average potential 

outcome 𝐸�𝑌�0,𝑀(1)�� that can be similarly identified under the sequential ignorability 

assumption and estimated through RMPW MOM estimation. We have implemented the two-step 

estimation procedure for decomposing the total treatment effect into a pure direct effect, a pure 

indirect effect, and a natural treatment-by-mediator interaction effect in a stand-alone RMPW 

software program freely available online at http://hlmsoft.net/ghong/. The same method can be 

extended to multivalued and continuous mediators. 

We conclude with a brief discussion of two future research directions. The first involves 

extending the RMPW estimation and the adjustment for the estimation of the weights to the 

context of multisite studies. Here, a site might be a school, a job training center, a hospital, or a 

community. Each site houses a mini-population in its own right. Of interest are not only the 

population average causal effects but also the between-site variance of each causal effect. Qin 

and Hong (2014, 2015) offer one translation; and we are currently evaluating this approach as 

well as exploring others.  

http://hlmsoft.net/ghong/
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Second, we are concerned with the issue of model selection for weight estimation. Our 

“stacking trick” approach presupposes that the logistic mediation models that one specifies for 

estimating RMPW weights are determined a priori on a theoretical basis. An alternative approach 

would be to employ a model selection procedure to choose the mediator models, with the intent 

of finding models that will yield RMPW estimators with relatively small bias and mean squared 

error (given that the ideal of employing the true mediator models is unlikely in practice).7 

Brookhart and van der Laan (2006) and Vansteelandt, Bekaert, and Claeskens (2012) offer two 

possible model selection algorithms, though Rotnitzky and Vansteelandt (2015) note reservations. 

Use of model selection would then require care with post-selection inference (Claeskens & Hjort, 

2008, chapter 7). Hong (2015) and colleagues (Hong, Deutsch, & Hill, 2011, 2015) proposed a 

semiparametric approach to estimating the propensity scores and the weights that are relatively 

robust to mediator model misspecifications. Others have recommended generalized boosted 

models for propensity score estimation (McCaffrey, Ridgeway, & Morral, 2004). We plan to 

explore the relative merits of these and other approaches and will extend the two-step estimation 

method to these alternative approaches.  

 

 

                                                           
7 Wooldridge (2010, chapter 13) contains a general discussion of the consequences of model 
misspecification for two-step estimators. Even if the mediator models are misspecified, their MLEs 𝛼� and 
𝛽̂ still have probability limits, call them 𝛼∗ and 𝛽∗, respectively. Let 𝜇∗∗ ≡

𝐸[𝑌𝑖𝑤𝑖(𝑀𝑖,𝑋𝑖,𝛼∗,𝛽∗)|𝑇𝑖=1]
𝐸[𝑤𝑖(𝑀𝑖,𝑋𝑖,𝛼∗,𝛽∗)|𝑇𝑖=1]

. It can 
be shown that, under model misspecification, the asymptotic bias of the two-step estimator of NIE is 
𝐸�𝑌�1,𝑀(0)�� − 𝜇∗∗, and the analogous asymptotic bias for the NDE estimator is 𝜇∗∗ − 𝐸�𝑌�1,𝑀(0)��. 
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Appendix 1 

Equivalence of RMPW Weighted Least Squares and Method of Moments Estimators 

We show that the weighted least squares-style (WLS) estimators of natural effects 

presented by Hong and colleagues (Hong, 2010, 2015; Hong, Deutsch, and Hill, 2015) are 

identical to the method of moments (MOM) estimators presented in section 3. The WLS 

approach adds a duplicate of each treatment group observation to the data set, where 𝐷 = 1 

indicates that an observation is a duplicate and 𝐷 = 0 otherwise. If 𝑁0 denotes the number of 

participants in the control group and 𝑁1 denotes the number of participants in the treatment 

group. The outcome vector 𝑌�  is of length 𝑁0 + 2𝑁1 due to the presence of the duplicate outcome 

observations. The design matrix 𝐿 is (𝑁0 + 2𝑁1) × 3, where the first column is a vector of ones, 

the second is the vector of 𝑇 values, and the third is the vector of 𝐷 values. There is also a 

diagonal weight matrix 𝑊, where outcome observations with 𝐷 = 1 or 𝑇 = 0 have weights of 1, 

and outcome observations with 𝐷 = 0 and 𝑇 = 1 have weight 𝑤 = 𝑤(𝑀,𝑋); that is, the RMPW 

weight is used. The WLS estimator is then 

𝛿 = (𝐿′𝑊𝑊)−1𝐿′𝑊𝑌�      (1) 

We may order the observations so that the control group observations are followed by the 

treatment group observations, which are followed by the duplicate treatment group observations:  

𝐿 = �
𝐿𝑎
𝐿𝑏
𝐿𝑐
� ,𝑊 = �

𝑊𝑎 0 0
0 𝑊𝑏 0
0 0 𝑊𝑐

� ,𝑌� = �
𝑌0
𝑌1
𝑌1
�     (2) 

where each of the 𝑁0 rows in 𝐿𝑎 is (1 0 0), each of the 𝑁1 rows in 𝐿𝑏 is (1 1 0), and each of the 

𝑁1 rows in 𝐿𝑐 is (1 1 1);  𝑊𝑎 and 𝑊𝑐 are identity matrices of dimension 𝑁0 and 𝑁1, respectively, 

and 𝑊𝑏 is a diagonal matrix with the 𝑁1 𝑤 values;  𝑌0 is the vector of 𝑁0 control group outcomes 

and 𝑌1 is the vector of 𝑁1 treatment group outcomes. It follows that 
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𝐿′𝑊𝑊 = 𝐿𝑎′𝑊𝑎𝐿𝑎 + 𝐿𝑏′𝑊𝑏𝐿𝑏 + 𝐿𝑐′𝑊𝑐𝐿𝑐 =

⎣
⎢
⎢
⎢
⎡𝑁0 + 𝑁1 + �𝑤 𝑁1 + �𝑤 𝑁1

𝑁1 + �𝑤 𝑁1 + �𝑤 𝑁1
𝑁1 𝑁1 𝑁1⎦

⎥
⎥
⎥
⎤
 

where ∑𝑤 is the sum of the 𝑁1 RMPW weights, and the inverse matrix is 

(𝐿′𝑊𝑊)−1 =
1

𝑁0𝑁1 ∑𝑤

⎣
⎢
⎢
⎢
⎢
⎡ 𝑁1�𝑤 −𝑁1�𝑤 0

−𝑁1�𝑤 𝑁0𝑁1 + 𝑁1�𝑤 −𝑁0𝑁1

0 −𝑁0𝑁1 𝑁0𝑁1 + 𝑁0�𝑤⎦
⎥
⎥
⎥
⎥
⎤

. 

            (3) 

Further, 

𝐿′𝑊𝑌� = 𝐿𝑎′𝑊𝑎𝑌0 + 𝐿𝑏′𝑊𝑏𝑌1 + 𝐿𝑐′𝑊𝑐𝑌1 =

⎣
⎢
⎢
⎢
⎢
⎡�𝑦0 + �𝑤𝑦1 + �𝑦1

�𝑤𝑦1 + �𝑦1

�𝑦1 ⎦
⎥
⎥
⎥
⎥
⎤

 

            (4) 

where ∑𝑦0 is the sum of the 𝑁0 control group outcomes, ∑𝑦1 is the sum of the 𝑁1 treatment 

group outcomes, and ∑𝑤𝑦1 is the sum of the 𝑁1 products of the RMPW weights and the 

treatment group outcomes. From (3) and (4) we have 

𝛿̂ = (𝐿′𝑊𝑊)−1𝐿′𝑊𝑌� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

∑ 𝑦0
𝑁0

∑𝑤𝑦1
∑𝑤

−
∑𝑦0
𝑁0

∑𝑦1
𝑁1

−
∑𝑤𝑦1
∑𝑤 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

            (5) 

The second entry in 𝛿 is the MOM estimator of the natural direct effect and the third entry is the 

MOM estimator of the natural indirect effect.  
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Appendix 2 

Software for Two-step RPMW Estimation 

The method of moments estimator described in this article is a type of generalized 

method of moments estimator, introduced by Hansen (1982). Stata contains a command, “GMM,” 

that generates such estimates for these models (StataCorp, 2013a). The Stata code below, divided 

into three steps, illustrates how to implement the stacked method of moments estimator. See the 

Stata manual for a full description of the command (StataCorp, 2013b). 

1. Generate a constant to be used in the GMM command 

generate cons = 1 

2. Execute the GMM command 

gmm (eq1: ( M - ( ( 1 / ( 1 + exp(-{xb1: cons X1 … Xp }) ) ) ) ) * T)   /// 

(eq2: ( M - ( ( 1 / ( 1 + exp(-{xb2: cons X1 … Xp }) ) ) ) ) * (1 - T))   /// 

(eq3: ( Y - {Mu0} ) * ( 1 - T)) /// 

(eq4: ( Y - {Mu1} ) * T) /// 

(eq5: ( Y - {MuStar} ) * /// 

( ( ( M * ( ( 1 / ( 1 + exp(-{xb2:}) ) )/( 1 / ( 1 + exp(-{xb1:}) ) ) ) )  + ( (1 - M) * /// 

( exp(-{xb2:}) / ( 1 + (exp(-{xb2:})) ) ) / ( exp(-{xb1:})  / ( 1 + (exp(-{xb1:})))) ) ) ) * T), 

/// instruments(eq1: X1 … Xp) instruments(eq2: X1 … Xp) instruments(eq3: ) /// 

instruments(eq4: ) instruments(eq5: ) winitial(identity) onestep 

Here X1 … Xp represent P covariates entered in each logistic regression model. This step 

produces coefficient estimates and standard errors for the covariates entered in the logistic 

regression models as well as for the sample means, Mu0 (i.e., 𝜇0) and Mu1 (i.e., 𝜇1), and the 
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weighted sample mean, MuStar (i.e., 𝜇∗). The “///” allows the code to be written on separate lines 

for clarity while indicating that each line pertains to one command. 

3. Use the “lincom” command to estimate natural indirect effect. This calculates the linear 

combination of coefficients estimated in the prior step, taking into account the covariance term in 

the standard error. The variance and covariance estimates used in this step come directly from the 

GMM estimation procedure in step 2, and are saved in memory. 

Estimate Natural Indirect Effect 

lincom  _b[/Mu1] - _b[/MuStar] 

Estimate Natural Direct Effect 

lincom  _b[/MuStar] - _b[/Mu0] 

Some programming is required to obtain bootstrapped standard errors in Stata. We used 

the following code in our estimation. 

* define program to compute estimates of NDE and NIE 

program nat_effects, rclass 

* compute RMPW weights 

logistic M X1 … Xp if T==0 

predict p_T0, pr 

logistic M X1 … Xp if T==1 

predict p_T1, pr 

gen w = M*(p_T0 / p_T1) + (1-M)*( (1-p_T0) / (1-p_T1) ) 

* estimate Mu0, Mu1, MuStar 

summ T 

local n1 = r(sum) 



30 
 

local n0 = _N - `n1’ 

gen num0 = Y*(1-T) 

summ num0 

local Mu0 = r(sum) / `n0’ 

gen num1 = Y*T 

summ num1 

local Mu01= r(sum) / `n1’ 

gen numstar = Y*w*T 

gen denomstar = w*T 

summ numstar 

local sumstar = r(sum) 

summ denomstar 

local MuStar = `sumstar’ / r(sum) 

drop num0 num1 numstar denomstar 

* estimate NDE and NIE 

return scalar nde_est = `MuStar’ - `Mu0’ 

return scalar nie_est = `Mu1’ - `MuStar’ 

end 

* get bootstrapped SEs 

bootstrap nde=r(nde_est) nie=r(nie_est), reps(1000): nat_effects 

We have similarly implemented the two-step estimation method in R (code available 

upon request) and in a stand-alone RMPW software program freely available online. 
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Appendix 3 
 

Derivation of the Two-Step Estimator 

We derive the elements in 𝐺21 = 𝐸 �
0

𝜕ℎ∗𝑖
𝜕(𝛼,𝛽)

0

� that contribute to the adjustment in equation 

(9). Because only ℎ∗𝑖 is dependent on 𝑤𝑖(𝑀𝑖,𝑋𝑖,𝛼,𝛽), hence dependent on (𝛼,𝛽), only the 

second row of this 3 × 2P matrix is non-zero. It takes some work to specify 𝜕ℎ∗𝑖
𝜕(𝛼,𝛽)

. 

𝜕ℎ∗𝑖
𝜕𝜕

= (𝑌𝑖 − 𝜇∗)𝑇𝑖
𝜕𝜕𝑖

𝜕𝜕
; 

𝜕ℎ∗𝑖
𝜕𝜕

= (𝑌𝑖 − 𝜇∗)𝑇𝑖
𝜕𝜕𝑖

𝜕𝜕
. 

We will make use of standard results for logistic regression models: 

𝜕𝜕𝑖𝛼

𝜕𝜕
= 𝜇𝑖𝛼(1 − 𝜇𝑖𝛼)𝑋𝑖,                        

𝜕𝜕𝑖
𝛽

𝜕𝜕
= 𝜇𝑖

𝛽�1 − 𝜇𝑖
𝛽�𝑋𝑖,                       

𝜕𝜕𝑖𝛼

𝜕𝜕
= −𝜇𝑖𝛼(1 − 𝜇𝑖𝛼)𝑋𝑖𝑋𝑖′(1 − 𝑇𝑖), 

𝜕𝜕𝑖
𝛽

𝜕𝜕
= −𝜇𝑖

𝛽�1 − 𝜇𝑖
𝛽�𝑋𝑖𝑋𝑖′𝑇𝑖.            

Using the logistic regression results and (8), we have that  

𝜕𝑤𝑖

𝜕𝜕
= �𝑀𝑖

1

𝜇𝑖
𝛽 − (1 −𝑀𝑖)

1

1 − 𝜇𝑖
𝛽�
𝜕𝜕𝑖𝛼

𝜕𝜕
= �𝑀𝑖

1

𝜇𝑖
𝛽 − (1 −𝑀𝑖)

1

1 − 𝜇𝑖
𝛽� 𝜇𝑖

𝛼(1 − 𝜇𝑖𝛼)𝑋𝑖; 
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𝜕𝑤𝑖

𝜕𝜕
= �−𝑀𝑖𝜇𝑖𝛼

1

�𝜇𝑖
𝛽�

2 + (1 −𝑀𝑖)(1 − 𝜇𝑖𝛼)
1

�1 − 𝜇𝑖
𝛽�

2�
𝜕𝜕𝑖

𝛽

𝜕𝜕

= �−𝑀𝑖𝜇𝑖𝛼
1

�𝜇𝑖
𝛽�

2 + (1 −𝑀𝑖)(1 − 𝜇𝑖𝛼)
1

�1 − 𝜇𝑖
𝛽�

2� 𝜇𝑖
𝛽�1 − 𝜇𝑖

𝛽�𝑋𝑖

= �−𝑀𝑖𝜇𝑖𝛼
�1 − 𝜇𝑖

𝛽�

𝜇𝑖
𝛽 + (1 −𝑀𝑖)(1− 𝜇𝑖𝛼)

𝜇𝑖
𝛽

1 − 𝜇𝑖
𝛽�𝑋𝑖. 
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Appendix 4 

Simulation Study Specifications and Results 

In this appendix we provide details about our simulation study. First we describe the data 

generating model and the parameter values we specified for our eight distinct simulated 

scenarios. Second, we provide results from two of the eight simulation scenarios for illustration. 

The first is a simulated scenario that has led to overestimation of standard errors of direct and 

indirect effect estimators when ignoring uncertainty in the estimated RMPW, and thus has 

resulted in conservative inference; the second simulated scenario has led to underestimation and 

thus liberal inference.  

(1) Data Generating Model and Parameter Specifications 

We generate three independent baseline covariates 𝑋1, 𝑋2, and 𝑋3 with identical 

distributions 𝑁(0,1). We randomly assign individuals to treatment, 𝑇𝑖, such that 𝑃(𝑇𝑖 = 1) =

0.5 for all 𝑖. Next, we generate a binary mediator from the following models under each 

treatment condition: 

𝑙𝑙𝑙𝑙𝑙{𝑃(𝑀𝑖 = 1|𝑇𝑖 = 0,𝑿𝒊)} = 𝛼0 + 𝛼1𝑋1𝑖 + 𝛼2𝑋2𝑖 + 𝛼3𝑋3𝑖  

𝑙𝑙𝑙𝑙𝑙{𝑃(𝑀𝑖 = 1|𝑇𝑖 = 1,𝑿𝒊)} = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 

where 𝑀𝑖 is a binary mediator. Each individual in the control group then obtains a mediator 

probability, 𝜇𝑖𝛼 = 𝑃(𝑀𝑖 = 1|𝑇𝑖 = 0,𝑿𝒊), with which we generate the mediator value for each 

individual in the control group from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜇𝑖𝛼). Similarly, each individual in the treatment 

group obtains a mediator probability, 𝜇𝑖
𝛽 = 𝑃(𝑀𝑖 = 1|𝑇𝑖 = 1,𝑿𝒊), with which we generate the 

mediator value for each treated individual from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜇𝑖
𝛽�. 

Finally, we generate a continuous outcome from the following model, allowing for an 

interaction between the treatment and the mediator: 
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𝑌𝑖 = 𝜃0 + 𝜃1𝑇𝑖 + 𝜃2𝑀𝑖 + 𝜃3𝑇𝑖𝑀𝑖 + 𝜃(1)𝑋1𝑖 + 𝜃(2)𝑋2𝑖 + 𝜃(3)𝑋3𝑖 + 𝜀𝑖 

in which 𝜀𝑖~𝑁(0,𝜎2). Based on expressions derived by Valeri & VanderWeele (2013) for the 

natural direct effect and natural indirect effect, 𝜃1, 𝜃2 and 𝜃3 can be computed as follows: 

𝜃2 = NIE �𝜇𝛽 − 𝜇𝛼�⁄ − 𝜃3 

𝜃1 = NDE − 𝜃3𝜇𝛼 

where 𝜇𝛽 = 𝐸�𝑃(𝑀 = 1|𝑇 = 1,𝑿)� and 𝜇𝛼 = 𝐸�𝑃(𝑀 = 1|𝑇 = 0,𝑿)�. We specify NDE to be 

three times NIE and compute 𝜃1, 𝜃2 and 𝜃3 as follows: 

𝜃2 = 3 4⁄ × NIE � 𝜇𝛽 −  𝜇𝛼�,⁄  

𝜃3 = 1 3⁄ × 𝜃2, 

𝜃1 = NDE − 𝜃3𝜇𝛼, 

in which 

             𝜇𝛽 = 𝐸�𝑃(𝑀 = 1|𝑇 = 1,𝑿)� 

                    = �
𝑒𝑒𝑒(𝑙𝑙𝑙𝑙𝑙{𝑃(𝑀 = 1|𝑇 = 1,𝑿)})

1 + 𝑒𝑒𝑒(𝑙𝑙𝑙𝑙𝑙{𝑃(𝑀 = 1|𝑇 = 1,𝑿)})𝑓
(𝑋1)𝑓(𝑋2)𝑓(𝑋3)𝑑𝑋1𝑑𝑋2𝑋3, 

          𝜇𝛼 = 𝐸�𝑃(𝑀 = 1|𝑇 = 0,𝑿)� 

                = �
𝑒𝑒𝑒(𝑙𝑙𝑙𝑙𝑙{𝑃(𝑀 = 1|𝑇 = 0,𝑿)})

1 + 𝑒𝑒𝑒(𝑙𝑙𝑙𝑙𝑙{𝑃(𝑀 = 1|𝑇 = 0,𝑿)})  𝑓(𝑋1)𝑓(𝑋2)𝑓(𝑋3)𝑑𝑋1𝑑𝑋2𝑋3. 

We select two different sample sizes: N = 1000 representing a relatively big sample size 

and N = 100 representing a relatively small sample size. For each sample size, we design eight 

simulations defined by eight sets of parameters, which create a range of scenarios that applied 

researchers may experience in practice and several others that are more extreme so that we can 

understand the robustness of the estimators under even unusual conditions.   

Each of the eight simulations varies one feature of the data-generating distribution at a 

time. The changes of the parameter values in the propensity score models lead to changes in the 
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magnitude and the variance of the RMPW weights and correspondingly the standard errors of the 

estimates of the direct effect and the indirect effect. In this way, we can evaluate the influence of 

each data generation feature on the estimation results, and assess the stability of performance for 

each estimation procedure.  

(2) Results from Two Illustrative Simulations 

Through Monte Carlo simulations, we compare the standard error estimator when the 

estimation uncertainty in the weights are ignored, the two-step standard error estimator, and the 

bootstrapped standard error estimator against the true standard error approximate obtained from 

1000 replications.  

For reference, we also compare with the results when using the true weights. The true 

weights are directly calculated with the parameters that we specify under each scenario, and thus 

no sampling variability is involved. In this way, we should almost always obtain an unbiased 

estimate of the standard error of a causal effect estimator. 

For the sake of illustration, we present the details of simulations 4 and 8. The parameter 

specifications for these simulations are given in Tables 4.1 and 4.2, and the simulation results are 

presented in Tables 4.3 and 4.4. 

Table 4.1. Parameter Specifications in the Mediator Models 

  𝛼0 𝛼1 𝛼2 𝛼3 𝛽0 𝛽1 𝛽2 𝛽3 
Simulation 4 -1 0.5 0.5 -0.5 1 0.5 0.5 -0.5 
Simulation 8 -0.1 0.5 0.5 -0.5 0.1 0.5 0.5 -0.5 

 

 

Table 4.2. Parameter Specifications in the Outcome Model 

  𝜃0 𝜃(1) 𝜃(2) 𝜃(3) 𝜎2 𝑁𝐷𝐷 𝑁𝑁𝑁 Var(Y) 𝜎2/Var(Y) 𝑁𝑁𝑁 𝑁𝑁𝑁 
Simulation 4 20 0.4 0.6 0.9 0.36 0.39 0.13 1.69 21% 0.3 0.1 
Simulation 8 20 0.4 0.6 0.9 0.36 0.39 0.13 1.69 21% 0.3 0.1 

Note: NDE and NIE are presented as effect sizes. 
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For both the direct effect and the indirect effect, Tables 4.3 and 4.4 show (1) the bias of 

the estimators of the natural direct effect and natural indirect effect, 𝑁𝑁𝑁�  and, 𝑁𝑁𝑁�  (2) the 

standard deviation of the sampling distribution of each estimator as the Monte Carlo 

approximation of the true standard error of each estimator, 𝑆𝑆�NDE�� and 𝑆𝑆�NIE� �, (3) the mean 

estimated standard error of each causal effect estimator, 𝑆𝑆��NDE�� and 𝑆𝑆��NIE� �, (4) the mean 

square error (MSE) of each standard error estimator, E{�𝑆𝐸��NDE��− 𝑆𝑆�NDE���
2

} and 

E{�𝑆𝑆��NIE� �− 𝑆𝑆�NIE� ��
2

}, (5) the 2.5th and 97.5th percentiles of the standard error estimates 

across 1000 replications, which we refer to as the 95% plausible range, and (6) the true coverage 

rates for nominal 95% CIs for each of the causal effects. By comparing (2) and (3), we assess the 

bias of the standard error estimators, while (4) and (5) provide information about the precision of 

the standard error estimators, and (6) provides information about the implications of standard 

error estimation for accurate statistical inference. 

We present results from Simulation 4 because, when N = 1000, ignoring the uncertainty 

of the estimated RMPW leads to overestimation of standard errors of direct and indirect effect 

estimators and thus conservative inference. We present results from Simulation 8 because, when 

N = 1000 and when N = 100, ignoring the uncertainty of the estimated RMPW leads to 

underestimation of the standard errors of direct and indirect effect estimators and thus liberal 

inference. The findings across all eight simulations have been summarized in the main text.  



37 
 

Table 4.3. Conservative Statistical Inference When Ignoring Uncertainty in Estimated RMPW 
  

 
   N=1000    N=100 

  true weight 

est. weight 
 

true weight 

est. weight 

ignoring 
uncertainty two-step bootstrap  

ignoring  
uncertainty two-step bootstrap 

Bias of NDE� 0.0076 0.0053  0.0207 0.0176 

𝑆𝑆�NDE�� 0.1018 0.09  0.3167 0.3212 

𝑆𝑆��NDE�� mean 0.1007 0.1021 0.089 0.0903  0.3081 0.3255 0.2931 0.3403 

MSE of 𝑆𝑆��NDE�� 2.39× 10−5 1.90× 10−4 1.75× 10−5 2.50× 10−5  0.0019 0.0067 0.0066 0.0081 
95% plausible range 
for 𝑆𝑆��NDE�� [0.092,0.111] [0.091,0.117] [0.083,0.098] [0.082,0.101]  [0.239,0.408] [0.233,0.532] [0.223,0.479] [0.249,0.579] 

coverage rate for 
95% CI for NDE 95.80% 97.80% 94.40% 94.10%  92.90% 94.60% 92.20% 95.70% 

          

Bias of NIE�  -0.0039 -0.0016  -0.0078 -0.0047 

𝑆𝑆� NIE� � 0.0583 0.0376  0.1814 0.2011 

𝑆𝐸�� NIE� � mean 0.0577  0.0598  0.0363  0.0393   0.1707  0.2001  0.1718  0.2368  

MSE of 𝑆𝑆��NIE� � 1.96× 10−5 5.63× 10−5 4.65× 10−5 6.02× 10−5  0.0016 0.0082 0.0109 0.0118 
95% plausible range 
for 𝑆𝑆�� NIE� � [0.05,0.067] [0.047,0.078] [0.027,0.052] [0.029,0.058]  [0.113,0.265] [0.099,0.442] [0.085,0.434] [0.124,0.522] 

coverage rate for 
95% CI for NIE 94.30% 100.00% 93.80% 94.40%  92.60% 97.10% 96.20% 99.10% 

Note. NDE=0.39; NIE=0.13. 

  



38 
 

Table 4.4. Liberal Statistical Inference When Ignoring Uncertainty in Estimated RMPW 
  

 
   N=1000    N=100 

  true weight 

est. weight 
 

true weight 

est. weight 

ignoring 
uncertainty two-step bootstrap  

ignoring  
uncertainty two-step bootstrap 

Bias of NDE� 0.0029 0.0029  -0.0005 0.0043 

𝑆𝑆�NDE�� 0.1229 0.1507  0.4043 0.5044 

𝑆𝑆��NDE�� mean 0.126 0.1267 0.1542 0.1546  0.3969 0.4138 0.4935 0.5197 

MSE of 𝑆𝑆��NDE�� 1.49× 10−5 5.84× 10−4 1.91× 10−5 3.26× 10−5  0.0006 0.0096 0.0016 0.0025 
95% plausible range 
for 𝑆𝑆��NDE�� [0.121,0.13] [0.122,0.132] [0.149,0.159] [0.147,0.163]  [0.35,0.444] [0.36,0.501] [0.434,0.567] [0.45,0.642] 

coverage rate for 
95% CI for NDE 95.00% 90.50% 95.40% 95.50%  93.90% 89.30% 94.50% 95.90% 

          

Bias of NIE�  -0.0004 -0.0003  -0.002 -0.0068 

𝑆𝑆� NIE� � 0.0058 0.0886  0.0184 0.313 

𝑆𝑆�� NIE� � mean 0.0058  0.0124  0.0896  0.0903   0.0186  0.1119  0.3139  0.3523  

MSE of 𝑆𝑆��NIE� � 6.43× 10−8 5.83× 10−3 6.32× 10−6 1.22× 10−5  0.0000 0.0436 0.0024 0.0047 
95% plausible range 
for 𝑆𝑆�� NIE� � [0.005,0.006] [0.005,0.023] [0.085,0.094] [0.084,0.096]  [0.014,0.024] [0.038,0.249] [0.253,0.433] [0.279,0.516] 

coverage rate for 
95% CI for NIE 94.80% 19.80% 95.90% 95.80%  94.60% 48.30% 94.80% 96.30% 

Note. NDE=0.39; NIE=0.13. 
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