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Abstract: The conventional approaches to mediation analysis such as path analysis and structural
equation modeling typically involve specifying two structural models, one for the mediator and the
other for the outcome. We employ an alternative approach that avoids some strong identification
assumptions invoked by the conventional approaches. By applying a new weighting procedure to
the observed data, we estimate the average potential outcome if the entire population were treated,
the average potential outcome if the entire population were untreated, and the average potential
outcome if the entire population were treated and if every individual unit’s mediator value would
counterfactually remain at the same level as it would be when untreated. The estimated differences
among these average potential outcomes provide estimates of the total effect, the natural direct
effect, and the natural indirect effect. Applying this approach to multilevel educational data, we
evaluate the total effect of the algebra-for-all policy in the Chicago Public Schools by comparing the
math achievement of two ninth-grade cohorts. We further investigate whether the policy effect was
mediated by the policy-induced change in class peer ability. Combining weighting with prognostic
score-based difference-in-differences adjustment enables us to reduce both measured and unmeasured
confounding.

Keywords: Causal inference, causal mechanism, directeffect, indirect effect, marginal mean weight-
ing through stratification, potential outcomes, propensity score, prognostic score, ratio-of-mediator-
probability weighting

This study introduces a new set of analytic procedures for revealing mediation mechanisms
in multilevel settings. We apply these procedures in an investigation of a citywide curric-
ular policy change in Chicago. Inference is based on a comparison between one cohort
of students who entered the system before the policy was introduced and another cohort
after the policy was implemented. We use marginal mean weighting through stratification
(MMWS) to adjust for observed between-cohort demographic differences. To adjust for
additional observed and unobserved between-cohort differences attributable to concurrent
historical changes, we employ a prognostic score-based difference-in-differences approach.
The ratio-of-mediator-probability weighting (RMPW) method then decomposes the total
policy effect into a direct effect and an indirect effect mediated by class peer ability change.
Taking advantage of the multicohort data, we reduce mediator-outcome confounding as-
sociated with not only covariates unaffected by the policy but also school-level covariates
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that could have been affected by the policy. A major contribution of the study is the appli-
cation of the RMPW method to multilevel educational data. This method provides a viable
alternative to the standard methods such as path analysis and structural equation modeling
(SEM) by simplifying outcome model specification and by allowing the treatment effect to
depend on mediator values.

In 1997, the Chicago Public Schools (CPS) introduced a policy that required all
students to take algebra by the end of ninth grade. Prior to 1997, whether a ninth grader
tock algebra primarily depended on the student’s math preparation in the elementary school.
The algebra-for-all policy was intended to eliminate remedial math courses and thereby
improving high school math achievement across the board. As schools increased algebra
enrollment, however, they often created mixed-ability algebra classes by enrolling lower
ability students in the same classes with higher ability peers. The reorganization of ninth-
grade math classes may have unintended consequences for some students. An earlier study
has shown that, although the policy indeed increased algebra enrollment among lower ability
ninth graders, the policy showed no detectable impact on their math achievement and yet
a negative impact on their grades and passing rates (Allensworth, Nomi, Montgomery, &
Lee, 2010). In the meantime, for higher ability students who would have taken algebra
regardless of the policy, there was a negative impact on their math achievement likely due
to a decline in class peer ability (Nomi, 2010).

This evidence seems to indicate that policy-induced changes in class ability composi-
tion may have implications for ninth graders’ math learning. Class peer ability represents
the amount of math knowledge and skills collectively brought by students in a class. In
theory, even when the curriculum is given, ability composition of a class may nonetheless
influence instructional content, pace, participation structure, peer interactions, and evalua-
tion, which may subsequently influence a student’s math learning and relative standing in
class. Changes in class ability composition may also lead to a reallocation of instructional
resources between and within classes (Harris, 2010). Hence, how much a student would
benefit from taking algebra may partly depend on the ability level of classmates. We reason
that changes in class composition may mediate the effect of the algebra-for-all policy on
students’ math outcomes. For lower ability students in particular, experiencing a rise in peer
ability may have mixed effects. Being placed in the same class with higher ability peers may
heighten peer competition, increase anxiety for failure, trigger frustration and alienation,

and lower one’s relative standing and self-esteem due to unfavorable social comparisons.
Yet participating in academic discourse that involves higher ability peers is expected to
advance lower ability students’ math learning unless the algebra content is beyond their
reach. In light of the carlier evidence, we expect that the mediation mechanism would be
different for higher achieving students.

Because the policy changed not only lower ability students’ course taking but also their
class peer composition, unpacking the overall policy impact on their math achievement is
especially challenging. To illustrate, our causal questions focus on decomposing the total
policy effect into the indirect effect mediated by class peer composition change and the
direct effect of the policy for the subpopulation of lower ability students. Specifically, we
ask: (a) Did the increase in class peer ability mediate the policy effect on these students’
math achievement? (b) Would the policy have a direct effect on these students’ math
achievement if their class peer composition had remained unchanged by the policy?

We organize the article as follows: After defining the causal effects and introducing
the data, the article provides an overview of the methodological challenges. We show
that the conventional approaches require identification assumptions that are apparently
implausible in the current application and, we suspect, in many other applications in
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educational research. We then propose a new approach to mediation analysis, clarify the
assumptions under which the causal effects can be identified, and evaluate the assumptions
in relation to the data. This is followed by a detailed explanation of the analytic procedure
and a report of the empirical results. The last section discusses the strengths and limitations
of our proposed methods and raises methodological issues for future research.

DEFINITIONS OF CAUSAL EFFECTS

Total Policy Effect

Let Zy = 1 if student i in school k attended the ninth grade after the algebra-for-all
policy was introduced and O otherwise, assuming that the student would attend the same
neighborhood school regardless of the policy. The student’s math achievement is a function
of the policy, denoted by Y ;(z). The student would display potential outcome ¥ (1) if
attending the ninth grade after the policy was introduced and would display potential
outcome Y (0) instead if attending the ninth grade before the policy was introduced. If
the student’s potential outcome values do not depend on when and how the treatment was
delivered and what treatments were received by other students in the population, under this
Stable Unit Treatment Value Assumption (SUTVA; Rubin, 1986), the total effect of the
policy for this student is simply the difference between the two potential outcomes: Y (1) -
Y(0). The average total effect of the policy for all students in this subpopulation is defined
as E[Y(1) - Y(0)], which is equivalent to E[Y(1)] — E[Y(0)], that is, the difference between
the average potential outcome if all ninth graders in this subpopulation would have attended
Chicago high schools after the policy was introduced and the average potential outcome if
all of them would have been present before the policy was introduced. The former would
have been observable had the policy taken effect in an earlier year; whereas the latter would
have been observable had the policy been postponed.

Even though a student’s school membership is given, when the policy is implemented
in classrooms, the student’s potential outcome values may depend additionally on the
classroom setting (Hong, 2004; Hong & Raudenbush, 2006). As we have theorized earlier,
peer ability composition in a math class is an important feature of the classroom setting that
may constrain instruction and may affect a student’s math achievement. Moreover, class
peer ability itself is most likely an immediate result of the policy because many schools
created mixed-ability algebra classes in the postpolicy year. Student i in school k might
be assigned to algebra class j and experience peer ability denoted by Cy(1) if attending
the ninth grade after the policy was introduced and might be assigned to remedial math
class j' and experience peer ability C;y(0) if attending the ninth grade before the policy
was introduced. In this study, math outcome and class peer ability are both measured on
continuous scales. Representing a potential math outcome as a function of policy z and
class peer ability C(z), the average total policy effect can be written as E{Y[1, C(1)] - Y10,
CO)]}.

Decomposition of the Total Policy Effect

Resorting to the potential outcomes framework, the recent statistics literature on mediation
has clarified the conceptual distinctions between controlled direct effects, natural direct
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effect, and natural indirect effect (Pearl, 2001, Robins & Greenland, 1992). Let Y[1, C(0)]
denote a student’s counterfactual math outcome under the algebra-for-all policy with class
peer ability counterfactually remaining unchanged by the policy. The natural direct effect of
interest here is the expected change in math outcome associated with the policy that cannot
be attributed to policy-induced changes in class peer ability, represented as E{Y[1, C(0)] —
Y[0, C(0)]}. The natural direct effect of the policy would inform us, for example, of how
the policy might have affected student outcome if the schools had not created mixed-ability
algebra classes. The natural indirect effect is the expected change in student math outcome
solely attributable to the policy-induced change in class peer ability, represented as E{Y[1,
C(D]-Y[1, C(0)]}. The sum of the natural direct effect and the natural indirect effect is the
total effect. The decomposition of the total effect is not unique because, alternatively, one
may define the natural direct effect as E{¥[1, C(1)] - Y[0, C(1)]} and the natural indirect
effect as E{Y[0, C(1)] - Y[0, C(0)]}.

In contrast, a controlled direct effect of the policy, represented as E[Y(1,c) — Y (0,¢)]
would be conceivable if another intervention held class peer ability at a fixed level ¢
regardless of whether a student attended the ninth grade before or after the policy was
introduced. The controlled direct effect and the natural direct effect would be equal if the
controlled direct effect did not depend on the mediator value ¢. For example, they would
be equal if how much a student would benefit from taking algebra did not depend on class
peer ability.

This framework of natural direct and indirect eftects relaxes SUTVA for potential out-
come values Y|z, C(z)] and for potential mediator values C(z). Under the algebra-for-all pol-
icy, a student’s peer ability and math outcome might conceivabl y have taken values different
from the observed ones if, for example, the school had counterfactually decided to continue
the same practice of sorting students to math classes as that prior to the policy, which
would lead to a lack of change in class peer ability despite the policy change. In our view,
* decomposing the total policy effect would have been impossible without relaxing SUTVA.

DATA

Population

The population includes all 59 CPS neighborhood high schools in existence before and after
the algebra-for-all policy was introduced in 1997, Among them 14 schools offered algebra

to all ninth graders even prior to 1997. We select one prepolicy cohort and one postpolicy
cohort of first-time ninth graders who were not receiving special education services.

Math Outcome

Student math achievement score comes from the Tests of Academic Proficiency adminis-
tered at the end of the ninth grade. The instrumentation did not change across the cohorts.

Class Peer Ability

A student’s latent math incoming ability is assessed on the basis of the Iowa Tests of
Basic Skills achievement trajectory from the third to the eighth grade. This measure has

©




Weighting Methods for Mediation Analysis 265

been standardized across multiple cohorts of students. We use the class median math
incoming ability to represent the average peer ability within a class. To ensure reliability
of measurement, classes with fewer than five students in the sample or with more than
30% of students missing incoming test scores are excluded from the analysis. Given the
finite sample size in a class, the median is preferable to the mean because the former is less
sensitive to extreme values.

Covariates

We consider all observed covariates that predict class peer ability when the policy is
given, that predict student math outcome when the policy is given, or that predict student
math outcome when the policy and class peer ability are both given. These are placed in
three categories: student pretreatment characteristics denoted by X, school pretreatment
characteristics denoted by X as most of these measures are school aggregates of student
characteristics, and school posttreatment characteristics denoted by W(z) for z =0,1. Table |
shows descriptive statistics for the covariates in each category.

Student pretreatment characteristics. These are student characteristics that could not have
been affected by policy exposure. The measures include age, gender, race, socioeconomic
status (SES), English language learner (ELL) status in the eighth grade, residence in
the attendance zone, residential mobility prior to high school, schooling experience in
CPS or elsewhere, and latent math and reading skills upon entering high school. Student
socioeconomic measures are constructed by linking the 2000 U.S. census block-level data
to student home address.

School pretreatment characteristics. These are school characteristics that could not have
been affected by the policy. The measures include the ninth graders’ racial composition,
age composition, SES composition, freshmen cohort size, percentage of ELL students,
percentage of special education students, percentage of students with a history of residential
mobility, percentage of students from private elementary schools, percentage of students
from non-CPS public schools, percentage of students from the attendance zone, whether
the school was vocational, whether the school offered algebra to all ninth graders in the
prepolicy year, and school mean and standard deviation of ninth graders’ incoming math
and reading skills.

School posttreatment characteristics. These are school characteristics, measured in the
prepolicy year and again in the postpolicy year, that could change over time as a result of
the policy and that could affect how students were assigned to classes and therefore poten-
tially confounding the mediator—outcome relationship. The measures include percentage
of regular education ninth graders enrolled in algebra, percentage of special education
ninth graders enrolled in algebra, percentage of ninth graders enrolied in higher level math
courses, total number of ninth-grade math teachers, number of ninth-grade math teachers
new to the school, and within-school variability in ninth-grade math class size.

Unobserved covariates. Concurrent historical changes that could lead to unobserved dif-
ferences between the pre-policy cohort and the postpolicy cohort are denoted by Uy.
Student, class, and school characteristics that could have been affected by the policy yet
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Table ‘1. Descriptive statistics
Prepolicy” Postpolicy® ;
M SD M SD
Student Outcome (Y)
TAP math scores 2257 1091 3012 11.28 ]
Mediator (M) :
Class median ability (cohort mean adjusted) -0.61 037 -0.25 0.33
Student Pretreatment Covariates (X)
Incoming math ability -094 029 -072 0.26
Male 0.46 050 050 0.50
White 0.08 027 006 0.23
Hispanic 034 047 038 049
Asian 001 011 001 0.10
Old for grade 0.15 036 023 042
Social status index 0.09 086 006 0.80
Poverty index -0.07 087 -0.15 0.84
From the attendance zone 062 048 0.67 047
Moved once 026 044 028 045
Moved twice or more 013 034 013 033
Receiving ELL services in 8th grade 0.18 038 023 042
Previously received ELL services 0.19 039 020 040
School Pretreatment Covariates (X)
Average incoming math skills -026 037 -0.03 045
Standard deviations in incoming skills 073 012 085 0.15
% special education students 0.13 005 0.18 0.09
% White 0.09 012 008 0.12 )
% Asian 002 004 002 0.05
% Hispanics 025 030 027 0.30
% students who are old for grade 0.13 003 021 0.03
% students who moved once 027 007 027 007 b
% students who moved twice or more 0.12 0.04 010 0.04 5
Average social status index -0.05 056 -0.03 0.55
Average poverty index 0.15 0.64 0.11 0.66
% students from attendance zone 051 030 051 032
% students who received ELL services in 8th-grade 011 014 012 0.4 :
Cohort size in hundreds 478 1776 3.86 1.56
School Post-Treatment Covariates (W(z))
Algebra enrollment rate (all students) 072 015 099 0.03 1
Algebra enroliment rate (disabled students) 036 020 092 0.16
Algebra enrollment rate (low-ability students without disability)  0.56  0.19 100 0.0l
" % 9th-grade students enrolled in advanced math 0.01 002 002 003 ;
% new teachers teaching 9th-grade math 035 018 034 020
No. of 9th-grade math teachers 1234 496 1122 442
% large classes 039 023 039 022 3
% small classes 0.18 016 027 0.3 .
Note. TAP = Tests of Academic Proficiency; ELL = English language learner. ;55
*Students N = 997; schools N = 30. "Students N = 541; schools N = 28. o
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were not included in our list of observed covariates are denoted by Uy (z). For example,
the unobserved covariates may include student motivation and parental involvement.

Subpopulation

As theorized earlier, the policy impact and its mediation mechanism may depend on a ninth
grader’s prior math ability. We empirically identified, among those attending schools that
had offered remedial math in the past, 997 prepolicy students and 541 postpolicy students
who would likely experience a rise in class peer ability as well as a change in course taking
due to the policy.! These students tended to have lower incoming skills than other students
in the same cohort. About 42% of these lower ability students enrolled in algebra prepolicy;
all of them enrolled in algebra postpolicy. After accounting for the general improvement in
ninth graders’ incoming skills from the prepolicy to the postpolicy year, we still find a full
standard deviation increase in class peer ability on average among these students.

Table 1 compares the prepolicy students and the postpolicy students in this subpopu-
lation with respect to the distributions of their ninth-grade math achievement, peer ability,
incoming math skills, and other student-level and school-level characteristics. In general,
the average ninth-grade math achievement was much higher in the postpolicy year than in
the prepolicy year. A notable change also occurred in student age composition: Postpolicy
students were more likely to be old for their grade level than their prepolicy counterparts,
likely due to the retention policy instituted in 1996. Among school characteristics that could
have been affected by the policy, the proportion of small classes increased notably in the
post-policy year.

METHODOLOGICAL CHALLENGES

The theoretical relationships among the algebra-for-all policy, class peer ability, student
math learning, and the covariates are represented in Figure 1. Our primary interest is in the
policy effect on math learning mediated by policy-induced changes in class peer ability.
Valid causal inference is threatened by two major sources of confounding. First, observed
pretreatment student characteristics X and school characteristics X along with unobserved
pretreatment student and school characteristics Uy may confound the policy effect on math
learning, the policy effect on peer ability, and the peer ability effect on math learning.
Second, observed posttreatment covariates W(z) and unobserved posttreatment covariates
Uyw(z) may confound the peer ability effect on math learning. Next we discuss the existing
approaches to mediation analysis and the assumptions required.

'To empirically identify the lower ability students among those attending policy-affected schools,
we specify a model predicting class peer ability in the prepolicy year C(0) as a function of student
and school characteristics and apply it to both cohorts. Similarly, a model predicting class peer ability
in the postpolicy year C(1) is applied to both cohorts. In addition, we specify a model predicting a
student’s conditional probability of taking algebra in the prepolicy year M(0) and apply it to both
cohorts. A student is identified to be in the lower ability subpopulation if the student would likely
experience a change in course-taking (M(0) < .9) and a rise in class peer ability (C(1) - C(0) >
0.3 SD).
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Figure 1. Causal model with potential confounders.

Path Analysis and Structural Equation Modeling

To estimate the natural direct and indirect effects from observed data using path analysis or
SEM involves the analysis of two parallel regression models. The first path model regresses
class peer ability on policy exposure; the second path model regresses math achievement
on class peer ability and policy exposure. Conditioning on the pretreatment covariates, the
coefficient for policy exposure in the second model is interpreted as the direct effect of the
policy; the product of the coefficient for policy exposure in the first model and that for class
peer ability in the second model is interpreted as the indirect effect. The standard error
for the estimated indirect effect can be obtained through implementing a Sobel test under
distribution assumptions (Sobel, 1982). Identification assumptions required by path analysis
and SEM have been explicated in past research (Holland, 1988; Robins & Greenland, 1992;
Sobel, 2008) and include the following.

Assumption 1. Nonzero probability of policy exposure conditioning on the observed stu-
dent and school pretreatment covariates.

pr(Z=2X,X)>0 forz=0,1.

Assumption 2. No confounding of the relationship between policy exposure and math
outcome conditioning on the observed student and school pretreatment covariates.

Y(z, c)]_[zp(,)‘( forz =0, 1

where ¢ takes values from the support for class peer ability within levels defined by X and
X. An unbiased estimate of the total policy effect on the math outcome can be obtained
under Assumptions 1 and 2.
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Assumption 3. No confounding of the relationship between policy exposure and class peer
ability conditioning on the observed student and school pretreatment covariates.

C(Z)UZIX,X forz =0, 1.

An unbiased estimate of the policy effect on class peer ability can be obtained under
Assumptions 1 and 3.

When Assumptions 1, 2, and 3 hold, policy exposure Z is ignorable conditioning
on the observed pretreatment covariates. In the CPS data, even though the algebra-for-all
policy was applied to the entire system, the policy effect estimate could possibly be biased
by concurrent historical changes. These may include an influx of an immigrant group
or the elimination of lowest achieving students in ninth-grade classes by the policy that
ended social promotion. Unmeasured historical confounding independent of the observed
pretreatment covariates would violate Assumptions 1 to 3.

Assumption 4. Nonzero probability of class peer ability assignment under a given policy
conditioning on the observed student and school pretreatment covariates.

prC@)=¢|Z=2,XX)>0 forz=0,1

It is assumed that, under a given policy z, a student might potentially experience alternative

class peer ability levels within the range experienced by those with the same pretreatment
backgrounds.

Assumption 5. No confounding of the relationship between class peer ability and math

outcome under a given policy conditioning on the observed student and school pretreatment
covariates.

Y(z, ¢) ]_I CIZ=12X%X

It is assumed that, within levels of the observed pretreatment covariates, class peer ability
C(1) is independent of the potential outcome Y{1, ¢] and that C(0} is independent of the
potential outcome Y{0, c].

Under Assumptions 4 and 5, class peer ability assignment under each policy condition
is ignorable conditioning on the observed pretreatment covariates. Assumptions 4 and 5 are
required for obtaining an unbiased estimate of the effect of class peer ability on the math
outcome given the policy. These two assumptions would be violated if there are unobserved
pretreatment or post-treatment covariates confounding the mediator—outcome relationship.

Assumption 6. The controlled direct effect of the policy on student math outcome does not
depend on class peer ability. In the current application, for those who would take remedial
math and therefore experience relatively low peer ability, the controlled direct effect of the
policy is likely greater than the effect for those who would take algebra and thus experience
relatively high peer ability in the prepolicy year. Hence this assumption would not hold.

Assumption 7. Each treatment effect is constant for all units in the population (Holland,
1988) or, when there is heterogeneity in treatment effects, the individual-specific policy
effect on the mediator is independent of the individual-specific mediator effect on the
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outcome (Bullock, Green, & Ha, 2010)‘2 This assumption would be violated, for example,
if students who are more susceptible to class peer influence are subjected to a more dramatic
shift in class peer ability.

When Assumptions 1 to 7 hold, one can use path analysis, SEM, or similar regression
models to decompose the total effect into a natural direct effect and a natural indirect effect
by invoking additional model-based assumptions (Baron & Kenny, 1986; Duncan, 1966;
Holland, 1988; MacKinnon, 2008). However, if applied to the current study, path analysis
and SEM would show limitations due to the implausibility of some key assumptions.
Alternative methods have emerged in the statistics literature to relax Assumptions 6 and 7
in particular.’

Marginal Structural Models

The regression-based methods as just described cannot handle posttreatment covariates that
are potential confounders of the mediator—outcome relationship. For example, percentage of
ninth graders taking algebra in a school is a direct result of the policy and is a potential cause
of both class peer ability and student math outcome. Adjusting for posttreatment covariates
as such through regression would bias the estimation of the total effect and the direct
effect of the policy on math learning (Rosenbaum, 1984). This problem can be overcome
by applying the marginal structural models (Robins, 2003; Robins & Greenland, 1992;
VanderWeele, 2009). Specifically, one may use inverse-probability-of-treatment weighting
(IPTW) to approximate a sequential randomized experiment in which students are first
randomized to different policy conditions and then, within each policy condition, are
randomized to different class peer ability levels. The weight is proportional to the inverse
of the conditional probability of class peer ability, the latter being a function of the observed
postireatment as well as the pretreatment covariates. Assumptions 4 and 5 are modified
and rendered more plausible. However, to estimate the natural direct effect and the natural
indirect effect, this method nonetheless requires Assumption 6.

When the controlled direct effect of the policy depends on class peer ability, neither
path analysis/SEM nor marginal structural models apply for estimating the natural direct
and indirect effects. Recent research has made important progress in relaxing Assumption
6 by replacing it with other identification assumptions.

Latest Advances in Mediation Analysis

Parametric approaches. A number of alternative methods have been proposed for esti-
mating the natural direct effect or the natural indirect effect within levels of observed
pretreatment covariates while allowing the treatment effect to depend on the mediator
value and therefore relaxing Assumption 6. They typically involve specifying an outcome

2Let a, denote the policy effect on student ’s class peer ability; and let b; denote the class peer
ability effect on math outcome conditioning on policy exposure. Furthermore, let a = E(a;) be the
coefficient for policy exposure in the first path model; and let b = E(b;) be the coefficient for class
peer ability in the second path model. As Bullock et al. (2010) showed, if individual-specific a; and
b; are not independent of each other, the indirect effect £(a;b;) will not be equal to the product of
coefficients ab. Instead, we have that

E(a;b;) = E(a;) x E(b;) + cova;, b;) = ab + cov(a;, b;)
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model as a function of the treatment, the mediator, the covariates, and their interactions
(Pearl, 2010; Petersen, Sinisi, & van der Lann, 2006; VanderWeele & Vansteelandt, 2009).
These methods require model-based assumptions with regard to the association between
the outcome and the mediator and that between the outcome and the covariates. The func-
tional form of the outcome model may have direct consequences for identification (Drake,
1993; Holland, 1988). Moreover, standard error computation becomes cumbersome for
each causal effect estimate represented as a function of multiple parameters.

Less parametric approaches. Other attempts have been made to relax Assumption 6 by
taking less parametric approaches. Viewing the counterfactual outcomes as missing data,
van der Lann and Petersen (2008) outlined a series of methods for estimating the natural
direct effect. The direct effect models require a user-supplied conditional distribution of the
mediator representing the data generating function under the control condition. Additional
modeling assumptions are necessary for obtaining estimators with good practical perfor-
mance. Alternatively, Imai and colleagues (Imai, Keele, & Tingley, 2010; Imai, Keele,
& Yamamoto, 2010) have developed a computationally intensive algorithm that requires
fitting a mediator model and an outcome model followed by repeatedly simulating the po-
tential values of the mediator and the potential outcomes given the simulated values of the
mediator. The analysis nonetheless depends on correct specifications of both the outcome
and the mediator models.

Trade-offs between alternative assumptions. However, unlike the marginal structural mod-
els approach, although allowing the treatment and the mediator to interact, the parametric
and less parametric innovations require the assumption that, conditioning on the pre-
treatment covariates, there is no cross-treatment confounding of the mediator—outcome
relationship. Assumption 6 is therefore replaced by Assumption 8 (Pearl, 2001; Robins,
2003). Moreover, Assumptions 4, 5, and 8 imply Assumption 7.

Assumption 8. No confounding of the relationship between class peer ability and math out-
come across different policies conditioning on the observed student and school pretreatment
covariates.

Yz o] ¢z =2zXX.

For example, it is assumed that prepolicy peer ability assignment C(0) is independent of
the postpolicy math outcome Y[1, ¢]. When Assumption 8 holds, among those who have
the same pretreatment characteristics, the average counterfactual outcome E{YI[1, C(O1}
of those who would have experienced peer ability level C(0) = ¢ in the prepolicy year is the
same as the average potential outcome E{Y[1, C(1)]} of those who actually experienced
peer ability level C(1) = c¢ in the postpolicy year. This assumption is violated, for example,
if the students who would take remedial math and therefore would experience relatively low
peer ability in the absence of the policy would also display a relatively low math outcome
when the policy is in place even after controlling for the observed covariates.’

In addition, the previous parametric and less parametric innovations require a stronger
version of Assumption 2.

Petersen et al. (2006) proposed a mean independence assumption implied by Assumption 8:
E[Y(1,¢) = Y(0,0)X,X] = E[Y(1,¢) — Y(0, 0)|C(0) = ¢, X, X]. In other words, the direct effect
of the policy no longer depends on class peer ability among those with the same pretreatment
characteristics.

FewEE
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Assumption 2*. No confounding of the relationship between policy exposure and the
potential outcomes conditioning on the observed pretreatment covariates.

Y(0, C(0)), Y1, C(1y), Y(I, C(O))]_[ ZiX, X.

NEW SOLUTIONS
Analytic Strategies

This study introduces a new alternative to mediation analysis with an application to multi-
level data. The primary goal is to obtain consistent estimates of the three potential outcomes:
E{Y[1, C(1)]}, E{Y[0, C(0)]}, and E{Y[1, C(0)]}, which makes possible the estimation
of the natural direct effect and the natural indirect effect. We combine several innovative
strategies outlined next.

RMPW estimation of the counterfactual outcome. If students were assigned at random to
either the algebra-for-all policy or the control condition, we could easily obtain unbiased
estimates of E{Y[1, C(1)]} and E{Y[0, C(0)1} from the observed data. However, a major
challenge to mediation analysis is to estimate the average counterfactual outcome E{Y[l,
C(0)]}. The inference would be possible if the experimental students would counterfactuall y
experience the class peer ability associated with the control condition. Let us suppose that, in
an ideal world, students were assigned at random to policy exposure and were subsequently
assigned at random to alternative class peer ability levels under each policy condition. We
might transform the distribution of class peer ability in the experimental group to resemble
its distribution in the control group by assigning the weight

_pr(C0)y=¢|Z =0)
O pr(C=clZ=1)

to the experimental students who actually experienced class peer ability level ¢. The wei ght
is a ratio of an experimental student’s probability of experiencing peer ability ¢ under the
control condition to that under the experimental condition.* The weighted mean outcome
of the experimental students estimates E{¥[1, C(0)]} in this simplified hypothetical exper-
iment. If the assignment to policy exposure were randomized while the assignment to class
peer ability were not, we might identify subgroups of students who were homogeneous in the
observed covariates. Applying RMPW within each subgroup, the weighted mean outcome
of the experimental students would consistently estimate E{Y[l, C(0)]} (Hong, 2010b).
This strategy is suitable for the current application because it does not require Assumption 6.

MMWS adjustment for observed confounding of policy exposure. Moreover, because policy
exposure was not randomized, the pre-policy students and the postpolicy students were
different in many important ways. To estimate the average potential outcomes E{Y[1,

“For example, in a sequential randomized experiment, suppose that the probability of having high-
ability peers is .6 under the experimental condition and .2 under the control condition. To estimate
E{Y[1, C(0)]}, the ratio-of-mediator-probability weight for an experimental student who was assigned
to have high-ability peers would be .2/.6 = 1/3, whereas the weight for an experimental student who
was assigned to have low-ability peers would be .8/.4 = 2.

i
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C(1)]} and E{Y[0, C(0)]}, we utilize MMWS (Hong, 2010a, 2011) to adjust for between-
cohort differences in the math outcome associated with most of the observed pretreatment
covariates. The weight is computed nonparametrically on the basis of the propensity of
policy exposure. We illustrate MMWS as an alternative to other propensity score-based
adjustment methods including matching, stratification, and IPTW.

Prognostic score-based difference-in-differences adjustment for additional confounding of
policy exposure. Between-cohort difference in the outcome is partly attributable to other
observed or unobserved covariates reflecting the impacts of historical events including
concurrent CPS policies. The historical confounding may affect all students including
those attending schools that offered algebra to all ninth graders in the prepolicy year
and therefore were unaffected by the policy. Modifying the conventional difference-in-
ditferences strategy, we remove the historical confounding locally assessed for subgroups
of students who are homogeneous in the observed pretreatment covariates.

Identification Assumptions

Our analyses invoke a set of identification assumptions similar to those required by the less
parametric innovations mentioned earlier (Imai, Keele, & Tingley, 2010; Imai, Keele, &
Yamamoto, 2010; van der Lann & Petersen, 2008). The RMPW strategy does not involve
explicit modeling of the mediator-outcome relationship. Hence Assamption 6 becomes
unnecessary.

Moreover, given the nature of the multilevel time series data, the same set of schools
were present in both the prepolicy year and the postpolicy year. Hence we are able to obtain
repeated measures of school characteristics that could have been affected by the policy
and could have atfected class peer ability and math outcomes. We assume that generally
a CPS student would attend the same high school regardless of the year of enrollment. In
a given school, prepolicy and postpolicy students would have the same values of school
characteristics W(0) if all enrolled in the prepolicy year and would have the same values of
W(1) if all enrolled in the postpolicy year. Because policy exposure z is fixed in both W(0)
and W(1), their adjustment will not introduce bias.’ We therefore modify Assumptions 4, 5,
and 8 by considering school posttreatment covariates W(0) and W(1) as well as pretreatment
covariates X and X. This modification increases the plausibility of these assumptions. For
z=0, I and for ¢ taking values from the support for class peer ability within levels defined
by X, X, W(0), and W(1), we require that

Assumption 4*. Nonzero probability of class peer ability assignment under a given policy
conditioning on the observed student pretreatment covariates and school pretreatment and
posttreatment covariates.

pr(C(z) = c|lZ = z, X, X, W(1), W(0)) > 0.

3In general, adjusting for a posttreatment covariate W would introduce bias because W = W(0) is
observed only among students in the prepolicy cohort, whereas W = W(1) is observed only among
those in the postpolicy cohort, in which case W is a function of policy exposure Z. In our application,
however, W(0) and W(1) are presumably observed for every student. When z takes a fixed value, W(z)
is a function of observed and unobserved pre-treatment covariates only and is no longer a function of
Z. Hence adjusting for W(z) would not introduce bias in estimating the policy effect.
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Assumption 5*. No confounding of the relationship between peer ability and math outcorme

under a given policy conditioning on the observed student pretreatment covariates and
school pretreatment and posttreatment covariates.

Yz o] [c@Iz =2X, X, w(), w).

Assumption 8*. No confounding of the relationship between peer ability and math outcome

across different policies conditioning on the observed student pretreatment covariates and
school pretreatment and post-treatment covariates.

Yz, o) | [C@NIZ = 2. X, X, W(1), W(0).

Next we explain how we employ MMWS and prognostic score-based difference-in-
differences to remove historical confounding in attempting to approximate a randomization
of policy exposure and, subsequently, how we use the RMPW method to contend with the

challenges to mediation analysis. The specific details of the procedure are summarized in
Appendix A.

MMWS for Equating Pre-Policy and Post-Policy Student Demographic Composition

As shown in Table 1, the composition of ninth graders changed over time. The MMWS
strategy equates the demographic composition of the prepolicy cohort and the postpolicy
cohort through propensity score-based weighting. For students attending schools affected
by the policy, we summarize the observed demographic information in a propensity score

indicating the conditional probability that a student would belong to the postpolicy cohort
denoted by

Oz=1 = pr(Z = 11X, X).

As described next, potential confounding effects of other historical factors are adjusted
through a prognostic score-based difference-in-differences strategy.

We make MMWS adjustment for students in the target subpopulation who attended
schools affected by the policy. To satisfy Assumptions 1,2, and 3, students who did not have
counterparts in the alternative cohort are excluded from the analytic sample. The common
support is bounded by the logit of propensity scores that are 0.2 standard deviations below

max{min(logity,  |Z = 1), min(logity, |Z = 0)]

and 0.2 standard deviations above the minimum of the two maxima (Austin, 2011). After
dividing this analytic sample into m = 1, ... 8 strata on the basis of the estimated 67 ;,
we compute the marginal mean weight such that the weighted prepolicy cohort and the

weighted postpolicy cohort have the same propensity score distribution. The weight for a
student with exposure to policy z in stratum m is

- Ay X P”(Z - Z)

w, = Im XPHE=2) (1)
z }’l”él—z
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for z = 0, 1. Here n,, is the total number of sampled students in stratum m; and pr(Z =
z) is the proportion of sampled students from the cohort that experienced policy z. Hence
the numerator represents the number of students in stratum m who would have experienced
policy z had policy exposure been completely randomized. The denominator nZ=7 is the
number of students in stratum m who actually experienced policy z.

The two cohorts are expected to display similar distributions of the observed pre-
treatment covariates after weighting. In general, the prepolicy students and the postpolicy
students in this subpopulation showed only small differences in demographic composition.
Age (i.e., being old for grade) and ELL status are the only characteristics that differed be-
tween the two cohorts by more than 10% of a standard deviation. The weighting adjustment
effectively removed these differences as shown in Table 2. Past research has suggested that
in the case of a binary treatment, MMWS is as effective as propensity score stratification in
removing at least 90% of the selection bias associated with the observed covariates with five
or six strata. Yet MMWS is more flexible than propensity score stratification for evaluating
multivalued treatments, whereas its nonparametric procedure enhances the robustness of
estimation results (Hong, 2010a).

Prognostic Score-Based Difference-in-Differences Adjustment for Other Historical
Confounding

We reduce the remaining between-cohort difference in the math outcome associated with
other historical confounding by using a non-equivalent comparison group. Fourteen CPS
schools offered algebra to all ninth graders even before the policy was introduced. In these

schools, class peer ability and student math outcome would not be affected by the policy;
hence

E{Y[1, ()]} = E{Y[0, CO]} = E{Y[1, CO)1}.

Any between-cohort difference in average math outcome is to be attributed to historical
factors concurrent to the policy. Such information allows us to capture additional historical
confounding affecting all schools. Researchers in the past often employ the difference-
in-differences method to remove unmeasured historical confounding. This conventional

Table 2. Between-cohort mean differences in student demographic characteristics before and after
being weighted by w,

Student Demographic Characteristics Before Weighting After Weighting
Male 0.04 0.00
White -0.02 ~0.01
Hispanic 0.04 -0.01
Old for grade 0.08 -0.01
Social status -0.03 0.00
Poverty -0.08 0.05
Attending school in the attendance zone 0.05 -0.02
Moved once 0.02 -0.01
Receiving ELL services in 8th grade 0.05 0.00

Previously received ELL services 0.01 -0.01
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strategy rests on the assumption that the average confounding effect of the historical
factors is the same for those unaffected by the policy and those affected by the policy. The
assumption would not hold, for example, if the confounding effect is different for Whites and
Blacks and if the racial composition differs between the two types of schools. To account
for such heterogeneity, we propose to use prognostic score-based adjustment where the
prognostic scores are defined as predicted outcomes in the absence of the policy and are
functions of the pretreatment covariates. For example, to the extent that race is associated
with prepolicy math achievement, the average prognostic scores may differ between Whites
and Blacks. The confounding effect estimated as a function of the prognostic scores would
then be differentiated between Whites and Blacks.

We tntend to identify students in schools affected by the policy and those in schools
unaffected by the policy who would display similar prepolicy math outcomes had they
attended the same type of schools. Let G = 0 if a student attended a school unaffected
by the policy and G = 1 otherwise. The student’s prognostic score W, is the predicted
prepolicy math outcome if the student would attend an unaffected school; the student’s
second prognostic score W, is the predicted prepolicy math outcome if the student would
attend an affected school. The prognostic scores are predicted as functions of the observed
pretreatment covariates X and X including student incoming math skills.® We allow the
pre-treatment covariates to predict the pre-policy math outcome differently across the two
types of schools.”

W, = E{Y[0, COOIIX,X, G = g) = a¥X +a¥R, forg=0,1. )

Using data from the unaffected schools, we compute the local confounding effect as a
function of the prognostic scores ¥ = (We—p, Wyuy):

E[BIW]=E[Y(DIZ=1,G=0,¥Y]—-E[Y(O)Z =0,G =0, ¥] (3)

¢ According to Hansen (2008), when the prognostic score is given, the potential outcome associated
with the control condition becomes independent of the observed pretreatment covariates. Hence
the prognostic score greatly reduces the dimension of covariates to be controlled for. Even though a
propensity score estimated as a student’s conditional probability of attending an affected school would
similarly reduce the dimension of covariates, the prognostic score-based adjustment has important
advantages in the current application. Most important, the propensity score for attending an affected
school makes no use of the outcome information. In contrast, because the prognostic scores are
predicted prepolicy math outcomes and are strongly correlated with the postpolicy math outcomes,
conditioning on the prognostic scores, the local confounding effect defined in Equation 3 can be more
precisely estimated. Furthermore, the propensity score for attending an affected school would be a
function of student characteristics only. The prognostic scores are functions of both student and school
characteristics and thus enable us to identify comparable students in comparable schools. Student-
level covariates include demographics, incoming skills, social status, poverty status, residence in
the attendance zone, mobility, and ELL status prior to high school. School-level covariates include
average incoming skills, demographic composition, SES composition (average social status and
poverty), mobility rate prior to high school, proportion from the attendance zone, and cohort size in
school.

’ A student’s incoming math ability is astronger predictor of the prepolicy math outcome if attending
a school affected by the policy than if attending a school unaffected by the policy. This is because the
student would probably take remedial math in a school affected by the policy but would take algebra
instead in a school unaffected by the policy.

D e S S S e P R T
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Table 3. Cell-specific estimate of local confounding effect

EB|=E[YIZ=1,G=

Prognostic Score Strata E[W,o0] E[We] 0]-E[Y1Z=0,G=0]
1 18.82 18.32 11.76
2 20.09 22.02 8.59
3 21.16 26.00 8.82
4 24.50 22.17 4.46
5 2455 25.80 8.95
6 25.11 29.26 9.59
7 28.90 25.19 3.66
8 29.35 28.54 8.08
9 29.94 30.92 9.42

Note. Strata | through 3 consist of students with W, = low, Strata 4 through 6 consist of students
with W, = medium, Strata 7 through 9 consist of students with W,y = high. Within each stratum

of W,_y, students were subdivided into three strata (low, medium, and high) along Wt

Subtracting the local confounding effect from the postpolicy math outcome of students in
the affected schools, we obtain the adjusted local policy effect:

{EIYNZ=1,G =1, V] - E[B|V])~ E[YO)Z=0,G = |, ¥].

This quantity represents the “difference in differences” among those who have the same
vector of prognostic score values. The population average policy effect can be obtained by
taking integrals over the joint distribution of Wegand W,_,8

We divide the sample into three strata on W ¢=0. Each of these three strata is then
subdivided into another three strata on W, . Table 3 lists the resulting nine cells. The
second and third columns show the cell means of W.—o and W,_, respectively. We then
obtain an estimate of the local confounding effect for each cell, computed as the cell-
specific between-cohort difference in the average math outcome of students in unaffected
schools. The estimated local confounding effect, shown in the last column in Table 3,18
then subtracted from the postpolicy math outcome of students in affected schools.

In addition to removing unmeasured historical confounding, the prognostic score-based
difference-in-differences strategy also enables us to adjust for between-cohort differences
in some observed covariates that the MMWS adjustment and other propensity score-based
methods are unsuitable for. In particular, system-wide improvement in elementary school
education in the 1990s raised math incoming skills of ninth graders by a counsiderable
amount. As shown in Table 1, the average math incoming skills of the lower ability students
increased by almost 1 standard deviation. As a result, prepolicy and postpolicy students

$We implement this procedure as follows. Analyzing Equation 2, we estimate the coefficients
%= and =Y using the prepolicy students attending unatfected schools. Similarly, «!*=" and
0521’:1) are estimated through analyzing the prepolicy students attending affected schools. Next, we
apply the model (Equation 2) to predict a pair of prognostic scores for the entire sample. However,
the prognostic score model for the pre-policy cohort would not apply to the postpolicy cohort if there
were important between-cohort differences in covariate relationships with Y(0). Hence, we apply the
marginal mean weight w, in all the analysis. Because the between-cohort demographic differences
might not be the same across the two types of schools, w, is obtained separately for affected schools
and unaffected schools.
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displaying the same level of math incoming skills differed vastly in their relative standing
within the respective cohorts. Moreover, few prepolicy schools could be equated with
postpolicy schools on school average math incoming skills. For this reason, we have not
included student math incoming skills and the school-level aggregate in the propensity score
for policy exposure. Instead, a student’s math incoming skills centered at the cohort mean
and the cohort mean-adjusted school-level aggregate are among the covariates predicting the
prognostic scores. Prepolicy and postpolicy students displaying the same prognostic scores
were expected to have the same relative standing in their respective cohorts upon entering
high school. The local confounding effect therefore captures the impact of between-cohort
difference in the absolute level of math incoming skills.

RMPW for Decomposing the Policy Effect

E{Y[1, C(0)]} is the average math outcome that postpolicy students would have displayed
had their class peer ability counterfactually remained at the prepolicy level. Under As-
sumptions 4%, 5%, and 8", we expect that among those who were homogeneous in the
covariates, the counterfactual outcome value Y[1, C(0) = ¢] would be the same as the
observable outcome value Y{1, C(1) = c¢]. Moreover, under Assumptions 1 and 3, the
two cohorts would have the same distribution of C(0) within levels of the covariates. Our
strategy is to transform the class peer ability distribution in the postpolicy cohort through
weighting such that it resembles that in the prepolicy cohort within levels of the covariates.
We compute the weight W for a postpolicy student experiencing class peer ability ¢ as
follows:

DCOy=c
W = —cO=¢
<l

4
Pcy=c @

After multiplying ww with w,, the weighted average math outcome of the postpolicy cohort
estimates the counterfactual outcome E{Y[J, C(0)]} (Hong, 2010b). See Appendix B for a
proof.

To compute ww requires information about a postpolicy student’s conditional prob-
ability of experiencing class peer ability ¢ that he or she actually experienced during the
postpolicy year, denoted by ¢ ¢(i)=c, and the student’s conditional probability of experienc-
ing class peer ability ¢ had the student attended high school in the prepolicy year instead,
denoted by ¢c)=c. We estimate these two conditional probabilities for each postpolicy
student.

Although class peer ability was continuous, we evenly divide the entire population
of ninth-grade classes in each cohort, including those attended by higher ability students,
into five levels—namely, lowest, lower, medium, higher, and highest denoted by ¢ = 0,
I, 2, 3, 4. To adjust for selection of class peer ability under each policy, we estimate
two sets of propensity scores—one for the prepolicy year and the other for the postpolicy
year—through analyzing an ordinal logistic regression model with students nested within
schools in each cohort weighted by w, (Zanutto, Lu, & Hornik, 2005). The predictors
include all the pretreatment student covariates X, pretreatment school covariates X, and
posttreatment school covariates W(1) and W(0). In addition, the model includes the school-
specific random intercept ug and the random slopes u, for student incoming skills, allowing
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Table 4. RMPW transformation of relative frequency distribution of peer ability levels

Peer Ability Prepolicy (w.) Postpolicy (w;) Postpolicy (w, X ww)
Y Yy o

Weighted N Proportion  Weighted N Proportion ~ Weighted N Proportion

Very low 368.23 0.46 68.49 0.15 216.59 0.46
Low 198.80 0.25 147.20 0.32 101.99 0.22
Medium 169.29 0.21 160.20 0.35 96.88 0.21
High 666.68 0.08 87.21 0.19 48.54 0.10
Sum 803 1.00 464 1.00 464 1.00

the selection mechanism to vary across schools.” The combined model for each cohort is
Ne = (Bi +u)X + X+ BsWO) + BaW() +ug +de; u~ N, ). )

Here c =0, 1,2, 3and do = 0; . represents the log odds of having peer ability above level ¢
to having peer ability at or below level c. For postpolicy students, the predicted probability
®c(vy=c can be obtained by applying the coefficients 8, B2, B3, B4, ug and u; in Equation
5 that are estimated from the prepolicy cohort data; @ ¢(i)=. can be obtained by analyzing
the same equation where the coefficients are estimated from the postpolicy data. Because a
substantial number of prepolicy students displaying a very high likelihood of experiencing
the lowest peer ability did not have counterparts among those experiencing the highest
peer ability, we remove the highest peer ability level from the subsequent analysis. Table 4
compares the relative frequency distribution of the four peer ability levels among prepolicy
students, among postpolicy students before weighting, and among postpolicy students
after weighting.'Y The chi-square test result shows no significant difference in class peer
ability distribution between the prepolicy cohort and the RMPW adjusted postpolicy cohort,
x*(3) =2.15p> .1

To estimate the total policy effect for students in policy-affected schools, a two-level
outcome model applies w, at the student level. Here the outcome values of students in the
postpolicy cohort have been adjusted on the basis of the prognostic scores. In addition, we
make covariance adjustment for prognostic score W,_; to improve precision (Yu, 2011).
For student i in school j, the outcome model is

Yi=v0+ Zib; + Wemi v +uo; + e ey ~ N0, o) ug; ~ N, 7). (6)

9To predict prepolicy class peer ability, we used all student covariates and the following school-
level covariates: demographic composition, SES composition, percentage of students from attendance
zone, percentage of students from non-CPS schools, vocational school, algebra for all students in the
prepolicy year, prepolicy algebra enrollment rate, higher math course enroliment rate betore and after
the policy, algebra enrollment rate among special education students before and after the policy, mean
and standard deviation of math incoming skills before and after the policy, and percentage of students
in special education. To predict postpolicy class peer ability, we used a similar set of covariates
and additionally included the percentage of students receiving ELL services in eighth grade and the
percentage of students moved prior to high school.

UBecause . is computed directly as a ratio of the two probabilities estimated from the sample,
the product of a)7 and W may become unduly large. We opt for trimming the values larger than 10
by replacing them with a constant 1.0. We then normalize the final weight to restore the sample size.
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Under-the identification assumptions 1 and 2, 8, is an unbiased estimate of the total policy
effect for students in policy-affected schools.

In the subsequent mediation analysis, we estimate the potential outcome E{¥ {0, co}
again from the prepolicy data weighted by w,. However, to estimate the counterfactual
outcome E{¥[1, C(0)1} as well as the potential outcome E{Y[1, C(1)]} from the postpolicy
data requires creating a duplicate set of the postpolicy cohort. After combining this duplicate
set with the original sample, we assign the weight as follows:

Apply @ = w, to prepolicy students for estimating E{Y[0, C(0)]};
Apply w = w, x ww to postpolicy students for estimating E{¥Y[1, C(0)]}; and
Apply @ = w, to postpolicy students in the duplicate sample for estimating £{¥[I,

C(H1}.

o=

Let D be a dummy indicator that takes value | for the duplicate postpolicy students
and O otherwise. We analyze a two-level outcome model wei ghted by w:

NDE NIE
Vi =vo+ Zy8\" + z;D;6"" + Wemriy1 +uoj + ey

ej ~ N(0,0%);  ug; ~ N, 7). %

Under Assumptions I and 2, y is a consistent estimate of £{Y[0, C(0)]}. and yy + 8{VF)
8§N”5) 1$ & consistent estimate of E{Y[1, C(D]}. In addition, under Assumptions 3, 4%, 5%,
and 8%, y + §{¥P#) is a consistent estimate of E{Y[1, C(0)1}; therefore, (V5 estimates
the average natural direct effect and (S%N’E) estimates the average natural indirect effect.
Hypotheses testing are based on robust standard errors that are comparable to sampling
variability in Monte Carlo simulation results (Hong, Deutsch, & Hill, 201 1.

ANALYTIC RESULTS
Total Policy Effect

Without any adjustment, the mean difference in the math outcome between the prepolicy
students and the postpolicy students is 7.82 (SE = 1.15, = 6.82, p < .001). The analysis
is based on data from 1,433 students in 30 policy-affected schools. After applying w, that
adjusts for between-cohort differences in student and school demographics, the between-
cohort difference in the math outcome becomes 7.87 (SE =129, 1 =6.10, p < .001).
Once we use the prognostic score-based difference-in differences strategy to remove the

Table 5. Estimated total policy effect

Adjustment Type Coefficient  SE t
No adjustment 7.82 115  6.82%*
MMWS 7.87 1.29  6.10%
MMWS and prognostic score-based difference-in-differences 0.25 1.45 0.18
MMWS, prognostic score-based difference-in-differences, and 0.23 .15 0.20

covariance adjustment for prognostic score
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Table 6. RMPW estimated natural direct effect and natural indirect effect

Coetficient SE {
Intercept (yy) 21.43 0.73 29,54
Natural direct effect (5") 2.70 1.20 224"
Natural indirect effect (89) -2.33 0.88 ~2.63"

po< 05 p < 01" p < 001,

confounding associated with additional historical factors including student incoming skills,
the between-cohort difference in the outcome is reduced to 0.25 (SE = 1.45, ¢ = 0.13).
Additional covariance adjustment for the prognostic score greatly improves precision. Our
final estimate of the total policy effect is 0.23 (SE = [.15, t = 0.20). These analyses use
data from 1,267 students in 28 schools. Table 5 summarizes the results.

Natural Direct Etfect and Natural Indirect Effect

Analyzing the model specified in Equation 7 with the final weight applied at the student
level, we decompose the total effect into the natural direct effect and the natural indirect
effect mediated by the policy-induced class peer ability change. The estimated natural direct
effect is 2.70 (SE = 1.20, t = 2.24, p < .05), and the estimated natural indirect effect is
—2.33(SE =0.88,t =-2.63, p < .01). These results are summarized in Table 6.

Results Obtained From Path Analysis

For comparison, we apply the conventional procedures outlined in Baron and Kenny (1986).
We make covariance adjustment for student math incoming skills and school average in-
come skills and use weighting to adjust for between-cohort difference in student demo-
graphics. Moreover, we center the predictors at their respective school means to remove
all time-invariant school-level confounding, a strategy equivalent to school fixed-elTects
analysis (Raudenbush, 2009). The estimated total policy effect on the math outcome is 5.00
(SE = 1.09, t = 4.57, p < .001); the estimated policy effect on class peer ability is 0.57
(SE =0.04, t = 15.17, p < .001); the estimated direct effect of the policy is 5.39 (SE =
1.40, r = 0.73, p = .47); whereas the estimated etfect of peer ability.conditioning on policy
is —0.94 (SE = 1.11, t = -0.85, p = .40). Hence, the indirect eftect of the policy mediated
by peer ability change is —0.54 and is not significantly different from zero according to the
result of a Sobel test.

CONCLUSION AND DISCUSSIONS

This article introduces a series of weighting in combination with prognostic score-based
difference-in-differences in analyzing multilevel cohort data. We evaluated the effect of
the algebra-for-all policy on ninth graders’ math achievement mediated by policy-induced
changes in class peer ability. The subpopulation of interest consists of students who would
probably take remedial math instead of algebra in the prepolicy year and were expected to
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experience an improvement in class peer ability in the postpolicy year. Although the policy
did not raise math achievement on average, there is evidence that the policy eftect was
partly mediated by class peer ability change. The evidence for a negative indirect effect is
consistent with the theoretical hypothesis that, for lower ability students, a rise in class peer
ability may put them at a disadvantage due to unfavorable socjal comparisons or because
instruction pitched to the middle of the class ability distribution is beyond their grasp. This
negative effect may dominate the potential benefit of participating in academic discourse
involving higher ability peers. The positive direct effect of the policy, primarily due to the
replacement of remedial math with algebra, indicates that exposing lower ability students
to algebra would have improved their math learning as intended had their class peer ability
remained unchanged.

In general, to reveal the causal mechanism of a system-wide policy is challenging
because those who actually experienced the policy might not be identical to those who
did not, and because those who experienced different mediator values under a given policy
tend to be systematically different. Moreover, there is often a Policy x Mediator interaction
effect on the outcome. This study has illustrated how to combine a series of innovative
analytic strategies to address possible threats to internal validity. Next we summarize the
major strengths of these new solutions and discuss the remaining issues.

Strengths of the New Solutions

RMPW for mediation analysis. As we have explained earlier, the path analysis/SEM ap-
proach to mediation (Baron & Kenny, 1986) conventionally assumes that the controlled
direct effect of the policy does not depend on mediator values. Recent extensions of these
regression methods (Pearl, 2010; Petersen et al., 2006; VanderWeele & Vansteela ndt, 2009)
relax this assumption typically by invoking model-based assumptions with regard to how
the treatment, the mediator, and the covariates interact in the structural model for the out-
come. The RMPW method decomposes the total effect into the natural direct effect and
the natural indirect effect without imposing model-based assumptions and thus has broader
application. According to the results from simulations of single-level data (Hong et al.,
2011}, under the identification assumptions, the RMPW strategy removes almost all of the
initial bias in estimating the natural direct and indirect effects. Generalized least squares
analysis generates robust standard errors for both the natural direct effect and the natural
indirect effect estimates and therefore provides direct tests of the null hypotheses. Simu-
lation results have shown that the robust standard error estimates are comparable to the
simulated sampling variability.

Adjustment for posttreatment covariates. When the direct effect is allowed to depend on
mediator values, it is typically required that posttreatment covariates do not confound the
mediator-outcome relationship given the observed pretreatment covariates. However, the
multilevel cohort data enable us to adjust for posttreatment school covariates. For example,
we have repeatedly observed the proportion of small classes in a school. Despite the fact that
the policy apparently increased the proportion of small classes, having both prepolicy and
postpolicy observations of this covariate for each school allows us to adjust for the selection
of class peer ability associated with this postlreatment covariate without introducing bias.

Prognostic score-based adjustment for historical confounding. Because the two cohorts
were 3 years apart, the amount of historical confounding could be substantial. Moreover,
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a major difference between the two cohorts lies in students’ math incoming skills due to a
concurrent improvement in the CPS elementary schools. By identifying students in policy-
affected schools and those in policy-unaffected schools who are relatively homogeneous
on a pair of prognostic scores, we are able to locally assess and remove the impact of
historical confounding more precisely than does the conventional difference-in-differences
approach.!!

Robustness enhanced by nonparametric weighting. The MMWS method employs a non-
parametric procedure in computing the weight that equates the baseline composition of
multiple treatment groups. Unlike propensity score-based matching or stratification, the
MMWS method is not restricted to evaluations of binary treatments. Past simulation results
have shown that in typical applications in which a nonlinear or nonadditive propensity score
model is misspecified as a linear and additive one, MMWS estimates of treatment effects
display a much higher level of robustness when compared with IPTW estimates (Hong,
2010a).

Precision improved by covariance adjustment for prognostic score. 1t is well known that
weighting increases the variation in estimation. Because the prognostic score summarizes
all the observed pretreatment information associated with the outcome under the control
condition, adjusting for the prognostic score is equivalent to adjusting for the entire set of
covariates with a minimal loss of degrees of freedom. Hence covariance adjustment for the
prognostic score in the outcome model effectively improves the precision (Yu, 2011).

Remaining Issues

The strategies that we have proposed here nonetheless require the strong assumptions that
policy exposure is independent of potential class peer ability and potential math outcome and
that class peer ability under each policy condition is independent of potential math outcome
given the observed covariates. Moreover, class peer ability under one policy condition
is assumed to be independent of potential math outcome under the alternative poticy
condition given the covariates. The adjustment for the confounding of mediator—outcome
relationship is likely incomplete in the current study. In particular, we were unable to
adjust for unobserved pretreatment and posttreatment covariates such as student motivation
and teacher quality. Nor were we able to adjust for observed student- and class-level
posttreatment covariates such as individual course taking and class size. If the relationship
between class peer ability and math achievement could have been confounded by an
omitted covariate, sensitivity analysis may be employed to assess the consequence of such
an omission (Imai, Keele, & Tingley, 2010; [mai, Keele, & Yamamoto, 2010; VanderWeele,
2010).

U Covariance adjustment for student incoming skills is seemingly inappropriate because it assumes,
for example, that a prepolicy student at the 50th percentile is comparable to a postpolicy student at
the 20th percentile displaying the same level of incoming skills. Propensity score-based adjustment
shows limitations due to the lack of overlap in the distribution of incoming skills between the two
cohorts. As shown in our results, covariance adjustment for incoming skills led to a conclusion that the
policy generated a positive total effect on math achievement. In contrast, the result from prognostic
score-based adjustment with comparable precision indicates that the average total effect of the policy
was indistinguishable from zero.
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- For example, a student’s prepolicy enrollment in algebra is an omitted confounder of
the mediator-outcome relationship in the prepolicy year because class peer ability was
higher in algebra classes than in remedial math classes and because course taking predicts
math achievement. Adjusting for the propensity score for prepolicy class peer ability, we
find that course taking no longer predicts math achievement within levels of class peer
ability. Hence this omission did not violate the ignorability assumptions. However, we find
postpolicy class size to be another omitted covariate that confounds the mediator—outcome
relationship in the postpolicy year. Low-ability students in this subpopulation, if attending
larger classes, tended to experience higher class peer ability and tended to score lower on
the math outcome. Adjusting for the postpolicy propensity score for class peer ability fails
Lo remove this confounding. It could be that, when required to learn algebra, lower ability
students were disadvantaged in a large class rather than in a class with relatively high
average ability. In the meantime, the policy apparently increased lower ability students’
opportunity of attending small classes. Had we been able to isolate a possible positive
indirect effect of the policy via class size reduction, we might have detected an even larger
negative indirect effect associated with the increase in class peer ability.

The need to examine class size and class peer ability as concurrent and correlated
mediators poses a major challenge to causal mediation analysis. Moreover, it is likely that
the causal mediation mechanism may vary across schools. Hence another major challenge is
to obtain consistent estimates of the variances and the covariance for the random intercept
and the random slopes in the final outcome model. We leave these topics for further
methodological investigation.
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II. Decomposition of the Total Effect

Affected by Policy

Pre-Policy (Z=0,G=1) Post-Policy (Z=1,G=1) '

Step 3: RMPW Estimation of E{Y[1, C(0)]}

Estimate pre-policy propensity score model, ¢ = In AMMMWWV Estimate post-policy propensity score model, ¢ = In Awmwwnv

Estimate QQCVHm
Predict %ﬁﬁovﬂn

Compute w e
el

Step 4: Weighted Estimation of E{Y[1, C(0)] — Y[0, C(0)]} and E{Y[1,C(1)]-Y[1, CO)]}

Estimate the total effect weighted by w,, with the post-policy outcome already adjusted for local confounding effect
Create a duplicate set of the post-policy cohort
@ = w, for pre-policy students Create a dummy indicator for the duplicates;
w = w, for post-policy students if duplicate;
=0, X 0o for post-policy students if original
Estimate the natural direct effect and the natural indirect effect weighted by @




Weighting Methods for Mediation Analysis

APPENDIX B
Let V = (X, X, W(0), W(1)) represent the observed covariates. We prove that
E(wY|Z = 1) consistently estimates E{Y[1, C(0)]}, where the weight

_pr(CO)y=c|Z=0,V) y pr(Z =1)
o CD =dZ =LV prZ =1V

The counterfactual outcome is
E{Y[1, C(O]} = E{E(Y[L, C(O)]V)}.

By Assumptions 1 and 2%, the above is equal to

E{E(Y[1,CONZ=1,V)}= /// yXx f(Y(z,c)=y|Z=1,C0)=¢,V =v)
v,C,y
xpr(CQ)=clZ =1,V =v) x i(V = v)dydcdy,

which, by Assumptions 1, 3, 4*, 5*, and 8*, is equal to

//[ yX f¥(z,0)=y|Z=1,C(1)=c,V =v)
UG,y
xpr(C0)=c¢c|Z =0,V =v) x i(V = v)dydcdv

which, by Bayes Theorem, is equal to

/// yXx fX(z,e)=yZ=1,C)=c,V=v)xpr(C(1)=c|Z=1,V =)
v,c,y .

pr(CO)=clZ=0,V=v)

X h(V =v|Z = 1) 2 pr(C(l) =clZ=1,V=v)

pr(Z=1)
pr(Z =11V = v)

dydcdv = E(wY|Z = 1).

where

_prCO=clz=0V)  priZ=1
T C =dz=1V)  prz =1V

This concludes the proof.



