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Abstract 

In the absence of a randomized control trial, regression discontinuity (RD) designs can produce 

plausible estimates of the treatment effect on an outcome for individuals near a cutoff score.  In 

the standard RD design, individuals with rating scores higher than some exogenously determined 

cutoff score are assigned to one treatment condition; those with rating scores below the cutoff 

score are assigned to an alternate treatment condition.  Many education policies, however, assign 

treatment status on the basis of more than one rating-score dimension.  We refer to this class of 

RD designs as “multiple rating score regression discontinuity” (MRSRD) designs.  In this paper, 

we discuss five different approaches to estimating treatment effects using MRSRD designs 

(response surface RD; frontier RD; fuzzy frontier RD; distance-based RD; and binding-score 

RD).  We discuss differences among them in terms of their estimands, applications, statistical 

power, and potential extensions for studying heterogeneity of treatment effects.  
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Regression discontinuity designs with multiple rating-score variables 

 
Introduction 

Regression discontinuity (RD) designs for inferring causality in the absence of a 

randomized experiment have a long history in the social sciences (see Cook, 2008) and have 

become increasingly popular in recent years (e.g., Cook, Shadish, & Wong, 2008; Jacob & 

Lefgren, 2004; Journal of Econometrics, 2008; Ludwig & Miller, 2007). Because the mechanism 

for selection into the treatment/control condition is known and observable in a regression 

discontinuity design, RD can provide unbiased estimates of treatment effects under much weaker 

assumptions than required for other quasi-experimental methods (Cook et al., 2008). Traditional 

RD utilizes a discontinuity in the receipt of treatment along a continuous measure (referred to as 

the rating score, running variable, or forcing variable), and estimates the treatment effect as the 

difference in the estimated limits of the average observed outcomes on either side of the 

discontinuity. Some recent examples of the application of RD designs in educational research 

include studies of Reading First (Gamse, Bloom, Kemple, & Jacob, 2008), Head First (Ludwig 

& Miller, 2007), public college admission policies (Niu & Tienda, 2009; Kane, 2003), and 

remedial education (Jacob & Lefgren, 2004; Matsudaira, 2008). 

However, many education policies rely on more than one rating score to determine 

treatment status.1 For instance, state high school exit exam policies often condition diploma 

receipt on student test scores in both mathematics and English language arts (e.g., Martorell, 

2005; Papay, Murnane, & Willett, 2010; Reardon, Atteberry, Arshan, & Kurlaender, 2009; Ou, 

2009). Similarly, rigid cutoff scores on multiple rating scales are used for determining services 

                                                 
1 We note that this is distinct from one rating score variable with multiple cutoff scores resulting in multiple 
treatment conditions (e.g., Black, Galdo, & Smith, 2005). As long as there is one rating score—regardless of the 
number of cutoff scores in the rating score—we refer to this class of RDs as “single rating score RDs” or single 
RSRDs. 
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for English learners in California (Robinson, 2008, under review) and higher education financial 

aid programs (Kane, 2003). Likewise, school accountability policies that label schools “failing” 

(e.g., No Child Left Behind) often base the label determination on whether multiple subgroups of 

students each attain their annual objectives.  

In such cases—where treatment assignment is determined on the basis of two (or more) 

continuous rating scores—the basic logic of traditional regression discontinuity applies. 

Nevertheless, regression discontinuity designs using multiple rating scores (hereafter, multiple 

rating score RD, or MRSRD) are distinctly different from RD designs using a single rating score 

in that the combination of cutoff scores attained determines treatment status. As a result, designs 

incorporating multiple rating-score variables raise three issues not present in the single rating 

score case: First, multiple rating scores may determine assignment to more than two treatment 

conditions. Second, rather than provide estimates of a single estimand for a single population 

(the effect of the treatment for individuals with rating scores near the cutoff score), MRSRD may 

provide estimates of multiple estimands (corresponding to the multiple possible treatment 

contrasts and for different subpopulations). And third, the analyst is faced with a wider range of 

strategies for estimating treatment effects from a multiple rating score regression discontinuity. 

The choice among these different strategies has important implications for precision, bias, and 

generalizability. 

Despite considerable recent work on the statistical underpinnings and practical estimation 

of regression discontinuity using a single rating score (see the special issue of Journal of 

Econometrics, 2008), the current literature lacks a thorough examination of issues concerning the 

study of program effects when multiple cutoff scores are used to determine eligibility or 
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participation. In this paper, we outline these issues, and describe their implications for the 

estimation of treatment effects.   

This paper addresses these issues and offers suggestions for implementation. In the next 

section, we provide a brief review of the single rating score RD estimator and then generalize the 

single RSRD design to the multiple rating score case. Here, we discuss how cutoffs in multiple 

rating score variables can create multiple treatment contrasts, leading to many possible 

estimands. The following section discusses several approaches to estimating average local 

treatment effects with multiple rating score variables. We discuss the assumptions and 

implementation concerns related to each approach. The next section addresses issues related to 

power in estimating the effects. Heterogeneity of treatment effects, which can be studied with 

MRSRD, is discussed in the following section. Our final section concludes with a comparative 

review of the MRSRD methods discussed in the paper, as well as a set of practical suggestions 

for analyzing data from MRSRD designs. 

 

A brief review of the RD estimator 

We frame our discussion in terms of the potential outcomes framework (see Fisher, 1935; 

Heckman, 1979; Holland, 1986; Neyman, 1923/1990; Rubin, 1978). First, consider the standard 

regression discontinuity design where treatment is assigned on the basis of a single rating score. 

Let ܴ indicate the rating variable, with the cutoff score at ܴ ൌ 0, such that cases with ܴ ൒ 0 are 

assigned treatment ܽ and cases with ܴ ൏ 0 are assigned treatment ܾ. Each individual ݅ has two 

potential outcomes, one outcome (denoted ௜ܻ
௔) that will result if the individual is assigned to 
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treatment ܽ, and another ( ௜ܻ
௕) that will result if he or she is assigned to treatment ܾ.2 The 

expected outcome under treatment ܽ for individuals with ܴ ൌ ሻݎis denoted തܻ௔ሺ ݎ ൌ

ܶ|ሾܻܧ ൌ ܽ; ܴ ൌ  at ݎ ሻ are continuous functions ofݎሻ and  തܻ௕ሺݎሿ. Under the assumption that തܻ௔ሺݎ

ݎ ൌ 0, the average effect of nt ܽ ܾ  b ritten as  treatme  relative to  at ݎ ൌ 0 can e w

ݎሻ|ሺݎሺߜ ൌ 0ሻ ൌ lim
௥՜଴శ

തܻ௔ሺݎሻ െ lim
௥՜଴ష

തܻ௕ሺݎሻ 

  [1] 

Under the continuity assumption, both limits on the right hand side of Equation (1) can be 

estimated from the observed data. The difference in the estimated limits is the regression 

discontinuity estimator. 

In order to obtain an unbiased estimate of this difference, we need only unbiased 

estimates of each limit. We can obtain these from a parametric regression model, under the 

relatively mild assumption that we have the functional form of the model correctly specified. A 

general parametric version of the model is 

 ௜ܻ ൌ ݂ሺݎ௜ሻ ൅ ሺߜ ௜ܶሻ ൅ ߳௜, [2] 

where ݎ is centered at the cutoff score, ݂ is a continuous function at ݎ ൌ 0, and ܶ is an indicator 

variable indicating whether ݎ ൒ 0 or not. We can also estimate ߜሺݎሻ|ሺݎ ൌ 0ሻ nonparametrically, 

by using a smoothing estimator to obtain each of the limits in Equation (1) (Hahn, Todd, & Van 

der Klaauw, 2001).3 Because the limits in Equation (1) can only be estimated from the observed 

                                                 
2 Note that this formulation implicitly assumes that ݅’s potential outcomes are independent of the treatment 
assignment of all other individuals, as assumption known as the “no interference between units” assumption (Cox, 
1958), or the “Stable-Unit-Treatment-Value Assumption” (or SUTVA; Rubin, 1986). 
3 In practice, however, nonparametric estimators rely on linear regression models fit to data within a (narrow) 
bandwidth around the cutoff score, implying that even such estimators have the form shown in Equation (2) (Imbens 
& Lemieux, 2008). 
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data at ݎ ൌ 0, the regression discontinuity estimator yields an estimate of the effect of ܽ versus ܾ 

only for individuals with values of the rating score right at the cutoff score.4 

 

Examples of treatment assignment on the basis of multiple rating scores 

Two concrete examples will help to illustrate our discussion of the multiple rating score 

RD design. First, consider a case where students are assigned to remedial or summer coursework 

on the basis of their scores on two tests, one in mathematics and one in English language arts 

(ELA) (examples of such policies include the summer school program described by Jacob and 

Lefgren, 2004, or the assignment to remedial coursework on the basis of a student’s performance 

on a high school exit exam in 10th grade as described by Reardon and colleagues, 2009). In this 

case, students who score below a given cutoff score on the math test are assigned to remedial 

coursework or summer school in math; students who score below a given cutoff score on the 

ELA test are assigned to remedial coursework in ELA. This results in four possible treatment 

conditions: no remedial courses; remedial math courses; remedial ELA courses; and remedial 

courses in both math and ELA.  

Second, consider a case where students are assigned to receive special services designed 

for English learner (EL) students unless they demonstrate adequate mastery of both academic 

and conversational English, in which case they are designated as “fluent English proficient” 

students and receive a standard curriculum and instruction (see Robinson, 2008, under review, 

for a discussion of such a policy in California). In this case, students who score below the 

                                                 
4 Nonetheless, the assumption that the potential outcome surfaces vary continuously with the rating score implies 
that the average treatment effects vary continuously with the rating score (that is, ߜሺݎሻ is a continuous function at 
ݎ ൌ 0). If ߜሺݎሻ is twice-differentiable with respect to ݎ and ߜ ′′ሺݎሻ ൎ 0 at the cutoff score, the estimated treatment 
effect at the cutoff will be approximately the same as the average effect in the region around the cutoff score. Thus, 
we often speak of the estimates from an RD design as generalizing to individuals with rating scores “near” the cutoff 
score. For precision, however, we will apply the stricter interpretation throughout this paper. 
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passing cutoff score on either the test of academic English or the test of conversational English 

receive EL services; students who score above the cutoff score on both receive standard 

instructional services. In this case, although there are two rating scores used to determine 

treatment assignment, there are only two distinct treatment conditions. 

 

Possible estimands from multiple rating score regression discontinuity 

In general, a treatment effect estimator produces an estimate of the average difference in 

some outcome ܻ that we would observe if a set of individuals in some population ܲ were 

exposed to some treatment ܽ rather than some treatment ܾ. Defining an estimand thus requires 

we specify three things: (1) the outcome of interest ܻ, (2) the population of interest ܲ, and (3) the 

treatment contrast of interest (ܽ relative to ܾ). In a simple randomized trial comparing two 

treatment conditions, we can obtain unbiased estimates of a rather general estimand (the effect of 

one treatment versus the other in the population of which the randomized sample is 

representative) or of any number of sub-population-specific estimands (the effect of one 

treatment versus the other in any observable sub-population of the population of which the 

randomized sample is representative). In a RD design with a single rating score, we can obtain 

unbiased estimates of only a more limited set of estimands: specifically, we can estimate the 

effect of one treatment versus the other in the sub-population of individuals with rating scores at 

(or near) the cutoff score of which the randomized sample is representative. In the case where 

treatment assignment is based on two or more rating variables, however, the set of possible 

estimands is even more constrained, as we describe below. 

The logic of using regression discontinuity to estimate treatment effects when treatment 

is assigned on the basis of two (or more) rating variables is similar to that of the single rating 
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score RD. For simplicity, we will restrict our discussion and examples to the case when 

treatment is assigned on the basis of two rating scores, though the issues are the same with any 

number of rating scores. Let ܴ1 and ܴ2 indicate rating variables, with cutoff scores at ܴ1 ൌ 0 

and ܴ2 ൌ 0. Let ݌ denote points in the 2-dimensional space ܴ defined by ܴ1 and ܴ2.  

Figure 1 presents a stylized example of the joint distribution of two hypothetical rating 

score variables ܴ1 and ܴ2 used to determine treatment status. The cutoff scores on ܴ1 and ܴ2 

are indicated by the solid lines. For generality, consider the case where there are four distinct 

treatment conditions, ܽ, ܾ, ܿ, and ݀. Individuals with both rating scores above their respective 

cutoff score (i.e., those in region A of Figure 1) are assigned to treatment ܽ. Those with scores 

below the cutoff score on ܴ1 but above the cutoff score on ܴ2 (those in region B of Figure 1) are 

assigned to treatment ܾ. Conversely, those with scores above the cutoff score on ܴ1 but below 

the cutoff score on ܴ2 (those in region D of Figure 1) are assigned to treatment ݀. Finally, 

individuals with both rating scores below their respective cutoff scores (those in region C) are 

assigned to treatment ܿ. In the remediation example above, ܴ1 and ܴ2 are scores on the math 

and ELA placement tests, and treatments ܽ, ܾ, ܿ, and ݀ correspond to the four possible 

remediation treatment conditions (respectively, no remedial courses; remedial math courses only; 

remedial courses in both math and ELA; and remedial ELA courses only). In the EL services 

example above, ܴ1 and ܴ2 are scores on the academic and conversational English tests; 

treatment ܽ corresponds to the standard instructional program; and treatments ܾ, ܿ, and ݀ are 

identical, corresponding to the EL services treatment condition. 

(Figure 1 here) 

Because there are four treatment conditions, each individual has four potential outcomes, 

denoted ௜ܻ
௔, ௜ܻ

௕, ௜ܻ
௖, and ௜ܻ

ௗ. We denote the expected outcome under treatment ݐ among 
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individuals at p as തܻ ௧ሺ݌ሻ. The average effect of one treatment (say ܽ) relative to another (say ܾ) 

among individuals at point p is then ߜ௔௕ሺ݌ሻ ൌ തܻ௔ሺ݌ሻ െ തܻ௕ሺ݌ሻ. Then, the average effect of ܽ 

relative to ܾ in the population ܲ is given by 

௉ߜ
௔௕ ൌ න ݌ሻ݀݌ሺߩሻ݌௔௕ሺߜ

௣אோ
 

  [3] 

where ߩሺ݌ሻ is the density of the population at point ݌ and ܴ is region of the two-dimensional real 

space containing the population ܲ. 

With a randomized experiment, we could obtain unbiased estimates of ߜ௉
௔௕ (as well as 

௉ߜ
௔௖, ߜ௉

௔ௗ, and so on). Regression discontinuity, however, does not provide estimates that are 

generalizable to the full population ܲ. Rather, RD provides unbiased estimates of the average 

effect of ܽ relative to ܾ for the subset ܲ஺஻ of ܲ with values of ܴ1 and ܴ2 that lie at the boundary 

between subregions A and B of ܴ. We denote this region as ܴ஺|஻. In Figure 1, for example, a 

regression discontinuity estimate of the effect of ܽ versus ܾ would apply only to the subset of the 

population with values of ܴ1 and ܴ2 that lie along ܴ஺|஻. 

More formally, two assumptions must hold in order that the multiple rating score 

regression discontinuity design will provide unbiased estimates of average treatment effects for 

the population at a treatment discontinuity. First, we assume that each average potential outcome 

surface തܻ ௧ሺ݌ሻ is a continuous function of ݌ (that is, it is a continuous function of ܴ1 and ܴ2) at 

the boundary (or boundaries) where we are estimating treatment impacts. Second, we assume 

that the cutoff scores on ܴ1 and ܴ2 are exogenously determined; this implies that ൣ ௜ܶ ٣

 ,in ܴ2. Then ݍ and ݌ denote the Euclidean distance between points ݍ,݌݀ Let .݌ | ܻ݀݅,…,ܾܻ݅ ,ܻܽ݅

for any two treatment conditions ݐ and ݑ, we have the following: 
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ሻ݌௧௨ሺߜ ൌ തܻ௧ሺ݌ሻ െ തܻ௨ሺ݌ሻ 

ൌ lim
௦՜଴శ

തܻ௧ሺݍሻ|ሺ݀ሺ݌, ሻݍ ൌ ሻݏ െ lim
௦՜଴శ

തܻ௨ሺݍሻ|ሺ݀ሺ݌, ሻݍ ൌ  ሻݏ

ൌ lim
௦՜଴శ

തܻ௧ሺݍሻ|ሺ݀ሺ݌, ሻݍ ൌ ,ݏ ܶ ൌ ሻݐ െ lim
௦՜଴శ

തܻ௨ሺݍሻ|ሺ݀ሺ݌, ሻݍ ൌ ,ݏ ܶ ൌ  ሻݑ

 [4] 

As long as the observed data contain cases assigned to treatment ݐ that are arbitrarily close to 

point ݌ and cases assigned to treatment ݑ that are arbitrarily close to point ݌, the limits in the last 

row of Equation (4) can be estimated from the observed data. Moreover, assuming the functional 

form of the estimator used to obtain these limits is appropriate, the estimated limits will be 

unbiased, yielding an unbiased estimate of the average treatment effect at ݌. Thus, we can obtain 

unbiased estimates of the average effect of treatment ݐ versus treatment ݑ only for points on the 

boundary that determines assignment to treatment conditions ݐ and ݑ. Generally, however, rather 

than estimate ߜ௧௨ሺ݌ሻ at some specific point or points along this boundary, we estimate the 

average value of ߜ௧௨ over the population at the boundary.5  

 Returning to the examples above, this implies six different potential estimands in the 

remedial course assignment example (refer to Figure 1): 

1. The average effect of  (no remediation) versus ܾ (math remediation) in the region ܴ஺|஻; ܽ

2. The average effect of ܾ (math remediation) versus ܿ (math and ELA remediation) in the 

region ܴ஻|஼; 

3. The average effect of ܿ (math and ELA remediation) versus ݀ (ELA remediation) in the 

region ܴ஼|஽; 

4. The average effect of ܽ (no remediation) versus ݀ (ELA remediation) in the region ܴ஺|஽; 

                                                 

 

5 In some cases, however, we may be interested in investigating the heterogeneity of ߜ௧௨ across individuals with 
different values of ݌ within the boundary region, a topic we return to later in this paper. 
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5. The average effect of ܽ (no remediation) versus ܿ (math and ELA remediation) at the 

origin; 

6. The average effect of ܾ (math remediation) versus ݀ (ELA remediation) at the origin. 

The analyses by Reardon et al. (2009) provide a useful example of several of these different 

estimands. They are interested in the effects of failing versus passing a high school exit exam in 

10th grade. They provide four estimates, corresponding to estimands 1-4 above: the effect of 

failing the math exam among those with math scores at the cutoff score and ELA scores above 

the passing score; the effect of failing the math exam among those with math scores at the cutoff 

score and ELA scores below the passing score; the effect of failing the ELA exam among those 

with ELA scores at the cutoff score and math scores above the passing score; and the effect of 

failing the ELA exam among those with ELA scores at the cutoff score and math scores below 

the passing score. 

In our second concrete example, where there were only two treatment conditions 

(standard instruction and EL instruction), only a single estimand is defined: the average effect of 

ܽ (standard instructional services) versus ܾ (EL instructional services) in the region defined by 

the union of ܴ஺|஻ and ܴ஺|஽. As above, however, we may wish to estimate the average effect of 

the treatment separately for the regions ܴ஺|஻ and ܴ஺|஽, particularly if we are interested in 

investigating the extent of heterogeneity of the effect. Kane (2003), for example, does this in his 

analysis of the effects of college financial aid. In his data, students receive financial aid if they 

meet a GPA criterion, an income criterion, and an assets criterion. In one of his analyses, 

inferences about the effect of the financial aid program can only be generalized to students at the 

GPA margin, among the subset of students who met the income and assets eligibility criteria. In 
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another of his analyses, inferences are generalizable to students at the income margin, given they 

met the asset and GPA criteria.  

 

Estimation strategies for multiple rating score regression discontinuity 

Conceptually, the analytic strategy of single or multiple rating score regression 

discontinuity is straightforward: we use the observed data to estimate the limits of the average 

potential outcomes functions at the boundary of two treatment assignment regions, and then take 

the difference of these estimated limits. The challenge lies in the fact that these limits must be 

estimated at the boundary of the observed data for each treatment condition; this requires fitting 

a regression model. As we discuss below, all sharp regression discontinuity estimators are based 

on fitting regression models of the following form to the observed data, where there are ܬ rating 

scores and c e n : ݇ distin t tr atment conditio s

௜ܻ ൌ ݂൫ܴ௜
ଵ, ܴ௜

ଶ, … , ܴ௜
௃൯ ൅ ෍ ௞ߜ ௜ܶ

௞

௞

൅ ௜۰܆ ൅ ߳௜, where ൛ܴ௜
ଵ, ܴ௜

ଶ, … , ܴ௜
௃ൟ א ܦ ؿ ܴ  

  [5] 

Here ܴ௜
ଵ, ܴ௜

ଶ, … , ܴ௜
௃ are the ܬ rating scores used to determine treatment status, and the ௜ܶ

௞ are 

binary variables indicating if individual ݅ is assigned to treatment ݇. Within this general form, 

the estimators differ in two important ways: 1) the specification of the function ݂; and 2) the 

domain (ܦ) of observations used in estimating the model.6 The inclusion of a vector ܆௜ of pre-

treatment covariates in the model may increase the precision of the estimates, but is generally 

unnecessary, as the model is well-identified without it (Imbens & Lemieux, 2008).  
                                                 
6 Even “nonparametric” regression discontinuity estimators have this form. In order to estimate the limits of the 
average potential outcomes functions, such estimators assume a linear average potential outcome function (so ݂ is 
linear on either side of the cutoff score, though possibly with a different slope on either side) within some narrow 
bandwidth of the cutoff score (so ܦ is defined as all points within some distance from the cutoff score, and the 
distance may differ between the two sides). In addition, they may include some kernel weighting to give more 
weight to observations close to the cutoff score (Imbens & Lemieux, 2008).  
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The choice of functional form of ݂ used to model the average potential outcome surface 

may be consequential, particularly when data are relatively sparse in the region near the 

boundary. The ideal situation would be an ample supply of data near a boundary. In this case, we 

might use only those observations arbitrarily close to either side of the boundary for estimation 

of the limits, a strategy that minimizes the necessity of making strong assumptions about the 

functional form of ݂. Under the continuity assumption, cases on either side of a boundary will 

become arbitrarily similar to one another, on average, save for their treatment status, as we 

narrow the distance from the boundary. In the extreme, if we limit our analyses only to cases 

arbitrarily close to the boundary, we can analyze the data as if they were produced by a tie-

breaking experiment. In the absence of very large amounts of data, however, restricting analyses 

to points very near to the cutoff score results in imprecise estimates of the limits, necessitating 

the use of data further from the cutoff score and assumptions about the functional form of the 

average potential outcome surfaces. Ideally, we would like estimates that are both unbiased and 

precise, but these goals are somewhat at odds with one another: we can gain precision by 

including observations further from the boundary and an assumed functional form to estimate the 

limits of the average potential outcomes functions, but doing so increases the potential bias in the 

estimated limits. We can reduce potential bias by narrowing the bandwidth, but generally at the 

cost of precision. 

 

Five estimation strategies 

We now introduce five possible approaches to estimating treatment effects using data 

from multiple rating score regression discontinuity designs. To aid understanding, we reference 

Figure 1 throughout our introduction to the various approaches. First, we describe response 
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surface regression discontinuity analysis. In this approach, we fit a parametric model to the full 

response surface, modeling treatment impacts as discontinuities in this surface at the treatment 

assignment boundaries. Second, we describe frontier regression discontinuity, in which we 

subset the data to estimate pairwise treatment effects by fitting single rating score regression 

discontinuity models to subsets of the data in adjacent subregions of ܴ (e.g., in Figure 1, we 

might use only individuals in regions A and D to estimate the effect of ܽ versus ݀). Third, we 

describe fuzzy frontier regression discontinuity, in which the cutoff on a single rating score 

serves as an instrument for treatment assignment. Fourth, we describe distance-based regression 

discontinuity which uses the distance to a point (e.g., the origin) as the rating variable for 

comparing available treatment contrasts at that point. Finally, we describe binding-score 

regression discontinuity. In this approach, we construct from the multiple rating scores a 

unidimensional rating score that perfectly predicts treatment assignment; single-rating score 

regression discontinuity models using this constructed score provide estimated treatment effects. 

Table 1 provides an overview of the estimands obtained from the various approaches, as well as 

a brief discussion of the approaches’ advantages and disadvantages. 

(Table 1 here) 

 

1. Response surface regression discontinuity 

Perhaps the most obvious way to estimate the effects of each treatment relative to the 

other(s) is to model the treatment effects as displacements of a multidimensional surface (see 

Robinson, 2008). That is, we simply fit a model of the form shown in Equation (5) above, where 

݂ is a continuous function describing the shape of the average observed potential outcomes 

surface and the ߜ coefficients indicate the average differences at the boundaries between 
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treatment assignment regions. Under the assumption that ݂ has the correct functional form, this 

will yield unbiased estimates of the average treatment effects at the boundaries. Note the 

response surface RD approach simultaneously estimates each possible treatment contrast (each 

of the estimands described above) from a single regression model, and can be used regardless of 

the number of rating scores or treatment conditions. 

When the multiple rating scores are used to assign individuals to one of two possible 

treatments (“treatment” and “control”), the typical response surface regression discontinuity 

model is 

௜ܻ ൌ ݂൫ܴ௜
ଵ, ܴ௜

ଶ, … , ܴ௜
௃൯ ൅ ߜ ௜ܶ ൅ ߳௜. 

  [6] 

In this model, ݂ is a continuous function (typically a multidimensional polynomial surface); and 

௜ܶ indicates the treatment status assigned on the basis of ൛ܴ௜
ଵ, ܴ௜

ଶ, … , ܴ௜
௃ൟ. Note that the model 

assumes that the treatment impact is unrelated to the rating scores. The estimand from this model 

is the average treatment impact among individuals whose vector of rating scores places them on 

the margin of being assigned the treatment or control condition. 

When ܬ ൒ 2 rating scores are used to assign individuals to one of ܭ possible treatments 

(where 2 ൑ ܭ ൑ 2௃), the typ a iscontinuity model is ic l response surface regression d

௜ܻ ൌ ݂൫ܴ௜
ଵ, ܴ௜

ଶ, … , ܴ௜
௃൯ ൅ ෍ ௞ߜ ௜ܶ

௞

௞

൅ ߳௜. 

  [7] 

As above, ݂ is a continuous function and ܶ௞ indicates assignment to treatment condition ݇. 

The strength of the response surface regression discontinuity analysis approach is that it 

can use all of the available data in a relatively parsimonious way, yielding relatively precise 
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estimates of the treatment effect. The weakness of the method is that it requires a strong 

functional form assumption to estimate the treatment effect and may rely on data far from the 

cutoff score. If the functional form of the model is misspecified, the estimates may be biased.  

 

2. Frontier regression discontinuity  

Rather than model the multidimensional response surface, a simpler method is to subset 

the data by status (above or below the cutoff score) on all but one of the rating scores, and then 

model the discontinuity along the remaining rating score using standard single rating score RD 

methods. This is the approach used by Kane (2003), Papay et al. (2010), and Reardon et al. 

(2009). For example, to estimate the effect of treatment ܽ versus ܾ in Figure 1, we can limit the 

sample to those with ܴ2 ൒ 0 and use traditional single rating score regression discontinuity 

methods to estimate the effect of ܽ versus ܾ. The estimand here will be the average effect of ܽ 

versus ܾ for individuals along the boundary ܴ |஻. ஺

The average local treatment effect of ܽ relative to ܾ (see Figure 1) for individuals who 

score above the cutoff score on ܴ2 itting the regression model  can be estimated by f

 ௜ܻ ൌ ݂ሺܴ1௜ሻ ൅ ௔|௕ߜ
௜ܶ
௔ ൅ ߳௜ [8] 

on the sample with ܴ2௜ ൒ 0 and with ܴ1௜ within some specified domain surrounding the cutoff 

score. Note that Equation (8) is a special case of Equation (5). The parameter ߜ௔|௕ indicates the 

effect of a relative to b at the frontier defined by ܴ஺|஻. Including a function of the other rating 

score(s) (e.g., ܴ2) and covariates in the model may improve the precision of the estimates of 

 :௔|௕ߜ

௜ܻ ൌ ݂ሺܴ1௜ሻ ൅ ௔|௕ߜ
௜ܶ
௔ ൅ ݃ሺܴ2௜ሻ ൅ ௜۰܆  ൅ ߳௜ 

  [9] 
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We can then estimate the average effect of ܾ versus ܿ, ܿ versus ݀, and ݀ versus ܽ in a 

similar fashion. It is important to note that these effect estimates are not necessarily comparable 

because each applies to a different sub-population. That is, we cannot estimate the effect of ܽ 

versus ܿ simply by adding the estimated average effects of ܽ versus ܾ in ܴ஺|஻ and ܾ versus ܿ in 

ܴ஻|஼  unless we assume that the effects are homogeneous across the population of interest (or at 

least among the populations at these two subregions). If there are only two treatment conditions, 

as in the EL services example given earlier, then the frontier regression discontinuity approach 

can provide some evidence regarding heterogeneity of effects by comparing the average effects 

of the treatment among those along frontier ܴ஺|஻ and those along frontier ܴ஺|஽. 

One advantage of this approach is that it is straightforward. It reduces the multiple rating 

score regression discontinuity analysis to a set of single rating score analyses, and so relies on 

well-understood methods of estimating effects in single rating score regression discontinuity 

designs. These estimates rely on the same (relatively mild) assumptions of the single RSRD 

model. The frontier RD approach, however, uses only a portion of the available data for each 

estimate, and so may yield less precise estimates than approaches that use all available data. 

 

3. Fuzzy frontier regression discontinuity 

A modification of the frontier regression discontinuity approach is to use all of the 

available data to estimate the average treatment effect at a given frontier, using an instrumental 

variables framework. Suppose we wish to estimate the effect of treatment ܽ versus ܾ over the 

frontier ܴ஺|஻ (e.g., the effect of no remediation versus a remedial math course for students who 

passed the ELA test and scored at the passing margin on the math test in our remediation 

example above). We define an indicator variable ܼ௜ such that ܼ௜ ൌ 1 if ܴ1௜ ൒ 0 and ܼ௜ ൌ 0 if 
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ܴ1௜ ൏ 0. We use ܼ௜ as an instrument for ௜ܶ
௔ and estimate the equations via two-stage least 

squares (or some other IV estima ntio  method): 

௜ܶ
௔ ൌ ݄ሺܴ1௜ሻ ൅ ௜ܼߛ ൅ ௜ડࢄ ൅  ௜ߤ

 ௜ܻ ൌ ݂ሺܴ1௜ሻ ൅ ௔|௕ሺߜ ௜ܶ
௔ሻ ൅ ௜ઢࢄ ൅ ߳௜. [10] 

Compared to the frontier RD, this approach is has the potential to utilize more (or even all) data, 

because the data in regions C and D can be used to estimate the treatment effect.  

However, it is important to note that this approach relies on additional assumptions. In 

particular, the fuzzy regression discontinuity approach requires the standard instrumental 

variables exclusion restriction: ܼ may affect ܻ only through ܶ (Angrist, Imbens, & Rubin, 1996). 

This implies that treatments ܿ and ݀ be identical (or produce identical average potential 

outcomes a  y ally, this requires t the boundar  ܴ஼|஽).  Form

lim
௥ଵ՜଴శ

ሾܻ|ܴ1ܧ ൌ ,1ݎ ܴ2 ൏ 0, ܶ ൌ ܿሻ ൌ lim
௥ଵ՜଴ష ሾܻ|ܴ1ܧ ൌ ,1ݎ ܴ2 ൏ 0, ܶ ൌ ݀ሻ. 

 [11] 

Because fuzzy regression discontinuity combines the regression discontinuity estimator and an 

instrumental variables estimator, its estimand is a combination of the RD and IV estimands 

(Hahn et al., 2001; Imbens & Lemieux, 2008; see also Trochim, 1984). In particular, fuzzy 

regression discontinuity yields an estimate of the local complier average treatment effect—that 

is, the estimated effect of treatment ܽ versus ܾ for those with ܴ1 scores near 0 whose treatment 

status is affected by whether ܴ1 is above or below 0.7 Because treatment assignment to ܽ or ܾ is 

not affected by ܴ1 for those with ܴ2 ൏ 0, the population to whom the estimates generalize is 

those on the boundary ܴ஺|஻. Thus, the fuzzy frontier regression discontinuity estimator identifies 

the same estimand as the frontier discontinuity estimator. It has the advantage of using more of 
                                                 
7 In this IV framework, we assume no “defiers”—that is, no individuals who deliberately take the opposite treatment 
than the one they were assigned to. This is an innocuous assumption if the cutoff scores are strictly adhered to. 
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the data than the frontier regression discontinuity (because it does not discard the data with 

ܴ2 ൏ 0), which may increase the precision of the estimates. However, the added uncertainty 

inherent in instrumental variables estimates may reduce the precision of the estimates, a point we 

discuss below. 

 

4. Distance-based regression discontinuity 

Estimating treatment contrast a vs c (or b vs d) can be difficult with finite samples 

because we are comparing observations at one point with those at another point (instead of along 

a line, as we would if we examined treatment contrast a vs b, for example). One strategy for 

studying such contrasts is to construct a variable that is the Euclidean distance from point ݌௜ to 

the origin. If we have two rating score variables, we can construct the new rating variable 

݀௜ ൌ ටܴ1௜
ଶ ൅ ܴ2௜

ଶ.8 Using only observations exposed to one of the two treatments of interest 

(e.g., only those in regions A and C), we can fit the model 

 ௜ܻ ൌ ݂ሺ݀௜ሻ ൅ ௔|௖ߜ
௜ܶ
௔ ൅ ߳௜ [12] 

 Note that we discussed the distance to the origin, but this approach could be used for 

estimating the effect at any point ሺܴ1כ, ,כ2ܴ … , ሻ, where the distance to the point is ݀௜כܬܴ ൌ

ට∑ ሺܴ݆௜ െ ሻଶ௃כ݆ܴ
௝ୀଵ  . However, most applications of this method will have low power for 

estimating the effect at any single point. 

 

5. Binding-score regression discontinuity.  

                                                 
8 This method can be extended to higher dimensions (where J indicates the number of dimensions) by calculating 

each i’s Euclidean distance to the origin, ݀௜ ൌ ට∑ ሺܴ݆௜ሻଶ௃
௝ୀଵ  . 
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When multiple rating scores determine assignment to only two treatment conditions, one 

can construct a new rating score that alone perfectly determines treatment assignment. For 

example, in our earlier example regarding reclassification of English Learners, students receive 

one treatment (they are reclassified) if they score at or above a given cutoff score on each of 5 

separate tests; otherwise they receive the control condition (not reclassified). No one of the 5 

scores alone perfectly determines treatment assignment, but we can construct a new rating 

variable, ܯ௜, defined as the minimum of the 5 test scores (where each score is first centered 

around its cutoff score), that does rf m nt: pe ectly deter ine assignme

௜ܯ ൌ minሺܴ1௜, ܴ2௜, , . 3]  … ܴ5௜ሻ [1

is a continuous, observable variable, defined so that ௜ܶ ܯ ൌ 1 if ܯ௜ ൒ 0 and ௜ܶ ൌ 0 if ܯ௜ ൏ 0. 

Given ܯ, we can use single rating score regression discontinuity methods to estimate the effect 

of the treatment for those values of ܯ ൎ 0 (those whose lowest score among the five was right at 

the margin of passing). That is, we th rm en fit a model of the fo

 ௜ܻ ൌ ݂ሺܯ௜ሻ ൅ ߜ ௜ܶ ൅ ߳௜ [14] 

to estimate the effect of the treatment.  

 More generally, we can use binding-score regression discontinuity by constructing a new 

rating score ܯ௜ ൌ ݃ሺܴ1௜, … , ,௜ሻ such that ݃ሺ0ܬܴ … ,0ሻ ൌ 0 and ݃ is monotonic in each ܴ݆. This 

raises the question of what function to choose for ݃. One strategy has been to construct ܯas the 

minimum of the standardized rating scores, based on the rationale that this makes the distance 

from the cutoff score comparable for each of the rating scores (Martorell, 2005; Robinson, under 

review). Although any function ݃ defined as above will provide an unbiased estimate of the 

treatment effect (assuming we can identify a correct functional form for the model relating ܻ to 

 the choice of ݃ may affect the power of the regression discontinuity model (because it will ,(ܯ
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affect the strength of the correlation between ܯ and ܻ, conditional on ܶ, which affects the power 

of the regression discontinuity estimator (Bloom, 2009). There is as yet little empirical or 

theoretical guidance, however, on how to pick a function ݂ that will maximize the precision of 

the binding score design. 

It may be useful to include the individual rating scores in the model as covariates to 

increase the precis  comes  ion of the estimates. In this case, the model be

௜ܻ ൌ ݂ሺܯ௜ሻ ൅ ݄ሺܴ1௜, ܴ2௜, … , ௜ሻܬܴ ൅ ߜ ௜ܶ ൅ ߳௜ 

ൌ ݂൫݃ሺܴ1௜, ܴ2௜, … , ௜ሻ൯ܬܴ ൅ ݄ሺܴ1௜, ܴ2, … , ௜ሻܬܴ ൅ ߜ ௜ܶ ൅ ߳௜ 

ൌ ݂ ′ሺܴ1௜, ܴ2௜, … , ௜ሻܬܴ ൅ ߜ ௜ܶ ൅ ߳௜. 

[15] 

Thus, the binding score regression discontinuity model is a special case of the response surface 

regression discontinuity model, where the function describing the response surface includes a 

minimizing or maximizing function ݃. 

The binding-score regression discontinuity model is appealing because it may use all of 

the available data to estimate the treatment effect, but does so by parsimoniously reframing the 

multidimensional vector of rating scores into a single dimension that alone determines treatment 

status.  

 

Statistical power of MRSRD designs 

The goal with any RD design is to obtain a precise unbiased estimate of the treatment 

effect (Imbens & Lemieux, 2008; Schochet, 2009); this is also true for MRSRD. The standard 

error of the treatment effect estimate [݁ݏ൫ߜመோ஽൯] in any RD design with a single treatment 

contrast is a function of sample size (ܰ), the proportion of the sample assigned to the treatment 
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(ܲ), the within-group sample variance in the outcome variable (ߪො௒|்
ଶ ), the proportion of variance 

in treatment status explained by the rating-score variable(s) and any covariates (்ܴ.܆,܀
ଶ ), and the 

proportion of error variance left unexplained by the rating score(s) and covariates (1 െ ܴ௒.܆,܀|்
ଶ ) 

(see Bloom, 2009; Schochet, 2009, for recent detailed discussions): 

መோ஽൯ߜ൫݁ݏ ൌ ඨ
൫ߪො௒|்

ଶ ൯൫1 െ ܴ௒.܆,܀|்
ଶ ൯

ܰܲሺ1 െ ܲሻ൫1 െ ܆,܀.்ܴ
ଶ ൯

 

[16] 

When there is a single treatment contrast (that is, when multiple rating scores determine 

assignment to one of only two treatments, as in the reclassification example above), both the 

surface RD and the binding-score RD methods estimate the same estimand—the average 

treatment effect for those whose combination of rating scores places them at the boundary of the 

two treatment assignment regions.  Assuming both methods use the same subsample of the 

available data, ܰ and ܲ will be the same in both cases.  The relative power of the two methods 

will therefore depend on the two ܴଶ terms.  The relative magnitude of the ܴ௒.܆,܀|்
ଶ  term will 

depend on whether the surface function ݂ in Equation (6) fits the data better than the binding 

score function ݂Ԣ in Equation (15).9  The relative magnitude of the ்ܴ.܆,܀
ଶ  term will generally be 

smaller in the surface RD method, all else equal, because the binding score alone captures more 

of the variance in treatment status than can the multiple rating scores alone (absent some 

interaction or higher-order terms of the rating scores).10  Because a higher value of ்ܴ.܆,܀
ଶ  implies 

                                                 
9 Different functions may yield the same unbiased effect estimates, because for unbiasedness, we require only that 
the limits of the functions approach the same values at the treatment assignment boundary.  The functional forms 
may predict different values elsewhere in the region ܴ. s t, rent fun  yield unbiased 

t e ௒.܆,܀|்
ଶ . 

 

A  a resul  diffe ctional forms may
es imates but have differ nt values of ܴ
10 To see this, note that if treatment is defined such that ௜ܶ ൌ 1ሼܯ௜ ൒ 0ሽ, where ܯ ൌ minሼܴ1, ܴ2ሽ, and we regress 

௜ܶ ൌ ଴ߚ ൅ ௜ܯଵߚ ൅ ଶܴ1௜ߚ ൅ ଷܴ2௜ߚ ൅ ݁௜, the expected values of ߚመଶ and ߚመଷ are 0 (because the rating scores tell us 
nothing about treatment assignment once we know ܯ).  However, the expected value of ߚመଵ will not be zero.  Thus, 
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a larger standard error, the surface RD design will generally yield more precise treatment effect 

estimates than the binding score RD design, assuming both models use the same subsample of 

data and fit the data equally well (i.e., have the same residual variance). 

In addition, when there is a single treatment contrast, both the frontier RD and the fuzzy 

frontier RD methods can be used to estimate the effect of the treatment for the subset of the 

population who score above the cutoff on all but one rating score and who score at or near the 

cutoff on the remaining rating score.  In this case the relative precision of the frontier and fuzzy 

frontier methods depends on multiple factors.  In particular, the standard error of the fuzzy RD 

estimate will equal the standard error of the intent-to-treat (ITT) estimate divided by the estimate 

of ߛ from the first-stage equation in model (10).11  Because ߛො ൑ 1, the standard error of the 

fuzzy frontier RD treatment effect estimate will never be smaller than that of the ITT estimate.  

The standard error of the intent-to-treat estimate from the fuzzy frontier method, 

however, may be larger or smaller than that of the frontier RD method.  To see this, note that the 

standard error of the ITT estimate is given by Equation (16) (replacing ܶ by ܼ in the equation).  

This standard error may differ from the standard error of the frontier RD estimate for several 

reasons.  First, the fuzzy frontier RD method uses a larger subsample of the data, which will tend 

to reduce the standard error of the relative to the sharp frontier method, all else equal.  Second, 

the value of ܲ may differ between the two methods, because the subsample of data used in the 

estimation may differ.  Because the standard error is minimized, all else equal, when ܲ ൌ 0.5, 

the inclusion of additional observations may tend to decrease or increase precision, depending on 
                                                                                                                                                            
the expected ܴଶ from this model will be equal t at of a model t tor of treatment 
status, but greater than on  tha nc y ܴ  an ܴ2 as (linear) . 

 

 

o th hat includes only ܯ as a predic
e t i ludes onl 1 d predictors of treatment status

11 The intent-to-treat estimate is the coefficient ߚመ  from the model ௜ܻ ൌ ݃ሺܴ1௜ሻ ൅ ௜ܼߚ ൅ ௜ઠࢄ ൅ ݁௜.  The Wald IV 
estimator of the effect of ܶ on ܻ is ߜመ ൌ  ො is estimated from the first stage of Equation (10) and theߛ ො (whereߛ/መߚ
standard error of the estimate is ݁ݏ൫ߜመ൯ ൌ  ො is interpreted as the proportion of observationߛ ො.  The coefficientߛ/መ൯ߚ൫݁ݏ
with ܴ1 ൎ 0 who have ܴ1 ൒ 0—it is the proportion of those individuals at the cutoff score of ܴ1 whose treatment 
status is determined by ܴ1. 
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whether the added observations increase or decrease the balance of the treatment and control 

group sizes.  Third, the two ܴଶ terms may differ between the two models.  Depending on the 

particulars of the joint distribution of ܴ1 and ܴ2 (and ܆), ்ܴ.܆,܀
ଶ  may be larger or smaller than 

ܴ௓.܆,܀
ଶ .  As a result, the fuzzy frontier ITT estimates may be more or less precise than the frontier 

RD estimates, implying that the fuzzy frontier RD effect estimates may likewise be either more 

or less precise than the frontier estimates.   

It may seem counterintuitive that the fuzzy RD estimates can be made more precise than 

the frontier RD estimates.  The inclusion of additional observations in which treatment 

assignment does not vary would seem to add no additional information regarding the treatment 

effect.  However, the additional observations may substantially improve the precision of the 

estimated limits of the regression function as it approaches the cutoff score.  For example, 

suppose we are interested in estimating ߜ௔|௕ (see Figure 1), and suppose ܴ2 was uncorrelated 

with ܻ, conditional on ܴ1.  Then the inclusion of individuals from region C would improve our 

ability to estimate the average value of ܻ for those with ܴ1 ൌ 0 and ܼ ൌ 0, because those in C 

would have identical values of ܻ, in expectation, to those in region B, conditional on ܴ1.  

Likewise, the inclusion of individuals from region D would improve our ability to estimate the 

average value of ܻ for those with ܴ1 ൌ 0 and ܼ ൌ 1.  If the increased precision gained by 

increasing the sample size this way were greater than the reduction in precision due to the 

division by ߛො, the fuzzy RD estimates will be more precise than the frontier RD estimates. 

 

Checking the assumptions MRSRD models 

With both single and multiple rating score RD designs, we assume that 1) the cutoff 

score(s) determining treatment assignment is/are exogenously set; 2) potential outcomes are 

 



 Multiple rating-score regression discontinuity 24 

continuous functions of the rating score(s) at the cutoff score(s); and 3) the functional form of the 

model is correctly specified. Imbens and Lemieux (2008) provide a detailed description of 

assumption checking in the single rating score RD context. We build upon their discussion to 

extend these checks to the case of MRSRD.  In particular, we suggest assessing the assumptions 

as they apply to each separate frontier at which there is a treatment assignment discontinuity, 

regardless of which of the analytic methods are used to estimate the treatment effects.  This 

enables the researcher to verify the plausibility of the assumptions at each treatment assignment 

threshold. 

In order to assess the plausibility of the assumption that the cutoff scores are exogenously 

determined, McCrary (2008) suggests (for the single rating score RD) checking that the density 

of observations be similar on either side of the cutoff score.  In the MRSRD design, it is useful to 

compare the density of observations near each of the cutoff scores.  For example, if there are two 

rating scores and four distinct treatment conditions (as shown in Figure 1), this entails four 

separate comparisons (one comparing the density of observations on either side of frontier ܴ஺|஻, 

one comparing the density on either side of frontier ܴ஻|஼ , and so on).  In general, if there are ܬ 

rating scores and 2௃ treatment conditions, this will entail ܬ · 2௃ିଵ separate comparisons.  

Evidence of discontinuity in the density of observations across any of the frontiers suggests the 

possibility of manipulation of the rating scores and thus, a failure of the exogeneity assumption.  

To assess the plausibility of the second assumption—continuity of potential outcomes—

we may examine the continuity of observable (pre-treatment) variables presumed to be related to 

the potential outcomes. In practice, this is done by checking that each such variable exhibits no 

discontinuity at each of the ܬ · 2௃ିଵ frontiers.  We check this by fitting a set of frontier regression 

discontinuity models, each with a covariate ܺ as the dependent variable, and testing the null 
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hypothesis that lim௥՜଴శ ܴ|ሾܺܧ ൌ ሿݎ ൌ lim௥՜଴ష ܴ|ሾܺܧ ൌ  ሿ for each ܺ at each frontier.  It mayݎ

be useful to include the other rating scores in the set of covariates ܆, as they should not vary 

sharply at any frontier.12 

The third assumption is that the functional form of the model is correctly specified.  As 

Imbens and Lemieux (2008) point out, this is best done through visual inspection of a plot of the 

relationship between the outcome variable and the rating score.  For each of the methods that 

reduce the multidimensional rating score space to a single rating score dimension (i.e., each of 

the methods except for the response surface RD method), this can be done straightforwardly with 

the methods described by Imbens and Lemieux (2008).  When using the response surface RD 

approach, however, identifying the correct functional form in a multidimensional space through 

graphical analysis can be difficult. In this case, we propose a visual inspection technique for 

assessing the appropriateness of the functional form of the surface RD model.  

Note that if the functional form of the model is correct, the residuals should have an 

expected value of 0 at each point in the multidimensional rating score space.  We check this as 

follows.  First, given a fitted surface RD model, predict the residuals.  For each frontier where 

there is a treatment condition discontinuity, (e.g., ܴ஺|஻ in Figure 1), consider the sample of 

observations that are in the adjacent regions of the rating score space (e.g., regions A and B in 

Figure 1).  Next, using this sample, construct a plot of the residuals from the surface RD model 

against the single rating score that determines treatment assignment at that frontier (e.g., ܴ1 if 

we are examining the frontier at ܴ஺|஻).  If the functional form of the model is correct, the 

residuals should have a mean value of 0 at each value of the rating score.  Most importantly, the 

residuals should have a mean value of 0 as they approach the cutoff score from both the left and 

 

                                                 
12 i.e., at the frontier defined by ܴ1 ൌ 0; ܴ2 ൐ 0 (frontier ܴ஺|஻ in Figure 1), it should be true that limRଵ՜଴షሺܴ2തതതതሻ ൌ
limRଵ՜଴శሺܴ2തതതതሻ. 
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the right.  This can be checked by fitting separate nonparametric smoothed curves through the 

data on either side of the cutoff score or by plotting the mean value of the residual within small 

bins across the range of the rating score.  We construct these plots for each of the frontiers in 

order to assess the model fit over the entire region of the sample.  Deviation of the mean value of 

the residual from 0—particularly at the cutoff score—suggests the response surface RD model is 

not fit correctly in this region of the data.  Ideally, there should be no noticeable deviation from 

average residuals of zero throughout the domain, though the most crucial region for no deviation 

is around any cutoff score at which there is a treatment discontinuity.  

 

Heterogeneity of average local treatment effects 

The MRSRD designs described above estimate local average treatment effects in the 

region near the cutoff score of one or more rating scores. These methods can be extended to 

investigate the extent to which treatment effects vary in relation to another rating score.  As with 

the study of average treatment effects, the researcher has the option of a range of approaches, 

each estimating a different estimand. We present stylized examples of these options in the case 

of the surface RD and the frontier RD methods; the extension to the other methods is similar. 

 

1. Response surface regression discontinuity 

With the response surface RD method, we can study how the relationship between the 

outcome and each rating-score variable changes at different values of the rating score (i.e., 

 for all ݆s simultaneously. For simplicity, we restrict our discussion to the case of only ,(݆ܴ߲/ߜ߲

one treatment and one control condition, but the same principles apply to cases of additional 

conditions. Beginning with Equation (6), each ܴ݆ is interacted with ܶ, yielding: 
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௜ܻ ൌ ݂൫ܴ௜
ଵ, ܴ௜

ଶ, … , ܴ௜
௃൯ ൅ ߜ ௜ܶ ൅ ෍ ௝ሺߛ ௜ܶ · ܴ݆௜ሻ

௃

௝ୀଵ
൅ ߳௜. 

  [17] 

From Equation (17), ߜ is now the treatment effect at the intersection of the cutoff scores, 

rather than the average treatment effect. This coefficient is likely to be uninteresting, unless one 

is interested in, for example, the effect of a policy on the type of student who barely meets all of 

the cutoff scores. Of greater interest are the coefficients ߛଵ, ,ଶߛ  ௃, which represent theߛ …

relationships between outcomes and scoring higher (or lower) on one cutoff score while just 

attaining the other cutoff scores. 

 

2. Frontier regression discontinuity 

Although heterogeneity can theoretically be estimated along all rating-score variables 

with the response surface RD, the frontier RD requires subsetting the data by subpopulations and 

estimating one heterogeneity estimate at a time. We can investigate heterogeneity of effects 

within a given subpopulation, such as individuals who attained the cutoff score on ܴ2 (in the 

case of two rating score variables, ܴ1 and ܴ2)—those in regions A and B of Figure 1. To do this, 

we estimate models such as: 

 ௜ܻ ൌ ݂ሺܴ1௜, ܴ2௜ሻ ൅ ߜ ௜ܶ ൅ ሺߛ ௜ܶ · ܴ2௜ሻ ൅ ߳௜ [18] 

where T indicates ܴ1 ൒ 0. Now δ  indicates the average effect of a versus b for individuals with 

ܴ1 ൎ 0; and ߛ indicates the extent to which the average effect of a versus b varies linearly with 

ܴ2 (within the subpopulation of individuals near ܴ஺|஻). 

 

Conclusions 
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Multiple rating-score regression discontinuity (MRSRD) designs are common in 

education.  In principle, they provide an opportunity to obtain unbiased estimates of treatment 

effects, using the same logic as single rating score RD designs.  However, MRSRD designs 

contain some added complexity not present in single RD designs.  In particular, they present the 

researcher with multiple possible estimands and multiple estimation strategies. 

In this paper, we have presented five approaches to estimating treatment effects in the 

multiple rating score RD design: response surface RD, frontier RD, fuzzy frontier RD, distance-

based RD, and binding-score RD.  These approaches differ in their estimands and their statistical 

power; they differ also in the extent to which the assumptions on which they rely are easily 

assessed.  As we have noted, each approach has advantages as well as shortcomings. 

In determining which analytic approach(es) to use in MRSRD design analyses, the first 

thing one should consider is the estimand of interest.  Depending on how many distinct treatment 

conditions are determined by the multiple rating scores, and depending on what subpopulation is 

of most interest, the researcher may desire to estimate different parameters.  Depending on the 

choice of estimand, one or more different MRSRD strategies may be useful.  The choice among 

these strategies should be driven by considerations of statistical power and the ease with which 

the identifying assumptions of the RD design are assessed. 

Regardless of the strategy used, researchers should assess the extent to which the data 

appear to support the assumption of exogenous determination of the rating scores and cutoff 

scores, the assumption that potential outcomes are continuous as the cutoff scores, and the 

assumption that the functional form of the model is correct.  Each of these assumptions are most 

easily assessed using frontier RD methods, because subsetting the data by frontier reduces the 

assumption checking process to a series of well-defined single rating score RD designs, where 
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methods of checking the assumptions are well-defined (see Imbens & Lemieux 2008).  However, 

if a response surface RD model is used to estimate the treatment effects, checking the functional 

form assumptions can be done by inspecting the residuals from the fitted model, as we describe 

above. 

Finally, an important feature of MRSRD is the ability to study heterogeneity of treatment 

effects. This feature allows us to simultaneously compare treatment effects along multiple cutoff 

scores/dimensions, and to potentially identify situations where policies and instructional 

practices are more effective. Just as different MRSRD approaches can yield different estimands 

in the study of local average treatment effects, they can address different questions regarding 

heterogeneity. Both the frontier RD and response surface RD can be used to study how the slope 

of the effect of the treatment received for attaining one cutoff score differs along another rating 

score dimension. 

Although this paper describes a set of strategies for analyzing data from MRSRD designs, 

several issues in the analysis of such designs deserve further attention.  First, the development of 

algorithms for the application of non-parametric methods to response surface RD models would 

be useful.  Recent developments in the use of non-parametric models (Hahn et al., 2001) and 

methods of optimal bandwidth selection (Ludwig & Miller, 2007; Imbens & Lemieux, 2008) 

may be extended to fit multidimensional surface RD models, as suggested by Papay, Murnane, 

and Willett (2009).  Second, although our discussion here has focused on the analysis of data 

from naturally-occurring MRSRD studies, the lessons from this may be used to develop 

guidelines for designing MRSRD studies to optimize precision.  Given the joint distribution of 

the rating scores and the correlations between the rating scores and outcome variable, choices 

regarding the number of rating scores, the location of cutoff scores, and sample size will affect 
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the precision of impact estimates from an MRSRD design.  As such designs become more 

common in education research, a better understanding of their effects will aid in designing 

appropriately-powered studies.    
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Table 1. Potential analytic scenarios and suggested methods for an MRSRD design 
 
Number of 
treatment 
conditions 

Method of analysis Estimand(s) Example  
(on Figure 1) 

Advantages Disadvantages 

2 (e.g., a single 
“treatment” and 
single “control” 
condition, such as in 
the reclassification 
example of 
“reclassified” or “not 
reclassified”) 

Response surface 
RD 

Average treatment 
effect among the 
population at 
frontiers of the 
treatment assignment 
region 

Average effect 
among those at 
thresholds ܴ஺|஻ 
and ܴ஺|஽ 

Potentially most 
precise method, 
because it can use 
all available data. 

Does not reduce to 
the familiar case of 
a single RSRD; 
modeling can be 
complex, and 
assumption checks 
can grow in number 
as dimensionality 
of the RSs grows; 
must be careful to 
not restrict data to 
unusual or artificial 
regions 

Binding-score RD Average treatment 
effect among the 
population at 
frontiers of the 
treatment assignment 
region 

Average effect 
among those at 
thresholds ܴ஺|஻ 
and ܴ஺|஽ 

Reduces the 
dimensionality to a 
single RSRD; uses 
all data 

May have less 
power than surface 
RD; choice of 
scaling of rating 
scores may affect 
estimates 

Frontier RD Local average 
treatment effect at a 
single frontier  

Average effect 
along ܴ஺|஻ 
(estimated using 
only data from 
regions A and B) 

Reduces the 
dimensionality to a 
single RSRD; 
readily 
interpretable 
estimand 

May not maximize 
power, because 
uses data from only 
two regions 

Fuzzy frontier RD Local average 
treatment effect at a 
single frontier 

Average effect 
along ܴ஺|஻ 
(estimated using  

May have greater 
precision than 
frontier RD under 

May have lower 
precision than 
frontier RD; 

 



 Multiple rating-score regression discontinuity 36 

data from regions 
A, B, C, and D) 

some 
circumstances 

modeling may be 
more complex than 
frontier RD; 
requires that c and 
d are identical 
treatments 

3 or more (as in the 
remediation 
example) 

Response surface 
RD 

Average treatment 
effects at each 
frontier that 
determines a 
treatment assignment 
discontinuity 

Effects at ܴ஺|஻, 
ܴ஺|஽, ܴ஻|஼ , and  
 ܴ஼|஽ 

All treatment 
effects can be 
estimated in a 
single model, 
maximizing power  

Model can become 
very complex as 
number of rating 
scores and 
treatment 
conditions grows; 
functional form 
validity hard to 
verify 

Frontier RD Local average 
treatment effect at a 
single frontier  

Average effect 
along ܴ஺|஻ 
(estimated using 
only data from 
regions A and B) 

Reduces the 
dimensionality to a 
single RSRD; 
readily 
interpretable 
estimand 

Must estimate each 
treatment effect 
separately; may not 
maximize power, 
because uses data 
from only two 
regions 

Fuzzy frontier RD Local average 
treatment effect at a 
single frontier 

Average effect 
along ܴ஺|஻ 
(estimated using  
data from regions 
A, B, C, and D) 

May have greater 
precision than 
frontier RD under 
some 
circumstances 

Not recommended. 
Requires that c and 
d are identical 
treatments (or 
produce identical 
potential 
outcomes); 
otherwise estimates 
will be biased 

Distance-based RD Average treatment 
effect at the origin 

Effect at the origin 
(estimated using 

Only method of 
obtaining effect of 

Low power (unless 
very high density of 
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data from regions 
A and C) 

treatment a versus 
c 

observations near 
the origin); 
estimand applies to 
very limited 
population 
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Figure 1. Discontinuity with 2 rating score variables. 
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