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Student Resources and Stratification among Colleges: 

An Agent-based Simulation of Five Mechanisms of the College Sorting Process 

 

Abstract 

We develop and implement an agent-based model that can be used to explore how dynamic processes 

related to socioeconomic inequality stratify students among colleges. The model simulates a stylized 

version of college sorting processes in order to explore how factors related to family resources might 

influence college application choices and college enrollment. We include two types of “agents”—students 

and colleges—to simulate a two-way matching process that iterates through three stages: application, 

admission, and enrollment. Within this model, we examine how five mechanisms linking students’ 

socioeconomic background to college sorting might influence socioeconomic stratification between 

colleges including relationships between student resources and: 1) academic achievement; 2) the quality 

of information applicants have about colleges and their own chances of admission; 3) the number of 

applications students submit; 4) how students value college quality; and 5) the students’ ability to 

enhance their (apparent) academic preparation. We find that the resources-achievement relationship 

explains much of the student sorting by resources, though other factors also have non-trivial influences. 

 

Keywords: agent-based models, socioeconomic inequality, college sorting, college admission, college 

enrollment 



1 
 

Student Resources and Stratification among Colleges: 

An Agent-based Simulation of Five Mechanisms of the College Sorting Process 

 

Introduction 

In the U.S., students with higher socioeconomic status (SES) are much more likely to enroll in 

college than their lower status peers (see, for example, Cabrera & La Nasa 2000; Bailey & Dynarski 2011). 

Socioeconomic status is also strongly associated with the selectivity and quality of the particular college in 

which a student enrolls: students from families in the top income decile are 8 times more likely to enroll 

in top-tier colleges than students in the lowest decile, a gap that has been growing over time (Alon 2009; 

Bastedo & Jaquette 2011; Reardon, Baker, & Klasik 2012). Taken together, these two phenomena 

generate substantial socioeconomic stratification within the American postsecondary educational system.  

This stratification is the end result of the relatively byzantine U.S. college admissions process. 

Students in the U.S. can apply to seek admission from as many colleges as they want. These applications 

are evaluated independently by each college, usually based on some combination of students’ 

performance on standardized tests (typically the SAT or the ACT), their academic record in high school, 

teacher recommendations, essays, and involvement in extracurricular activities. The relative importance 

each of these elements play in the admissions decisions at any given college is generally not publicly 

known and varies from school to school. Students generally apply with the goal of gaining admission to 

the best school that they can, however the better schools are generally more selective about whom they 

offer admission to. Some of the most selective schools will accept as few as 5 percent of all applicants, 

while most colleges accept the vast majority of students that apply.  

There are many advantages conveyed by graduation from a selective college, particularly for 

minority students and those whose parents had low levels of education (Black & Smith 2004; Dale & 

Krueger 2011;Hoekstra 2009; Long 2008). But students, particularly ones from low-SES families, do not 
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always appear to make application decisions that would maximize these benefits (Bowen, Chingos, & 

McPherson 2009; Hoxby & Avery 2012; Roderick, Nagaoka, Coca, & Moeller 2008; Roderick, Nagaoka, 

Coca, & Moeller 2009). Perhaps partially as a result of these application choices, students from low-SES 

families are much less likely than high-SES students to enroll in selective colleges. Figure 1 demonstrates 

this disparity by showing that students whose family income fell in the 80th percentile nationally were 

four times more likely to enroll in one of these schools than a student in the 20th percentile. This disparity 

is even more extreme for higher/lower percentile income families. Reardon, Baker, and Klasik (2012) 

show that students from families earning more than $75,000 (in 2001 dollars) were dramatically 

overrepresented in the most selective categories of colleges, while students from families earning less 

than $25,000 were notably underrepresented at these same schools. Such disparities are not new, but 

the underrepresentation of low-income students at highly selective schools has increased over time (Alon 

2009; Astin & Oseguera 2004; Belley & Lochner 2007; Karen 2002). This trend has paralleled an increase 

in income stratification within the US, as well as an increase in the academic achievement gap between 

high- and low-income students (Reardon 2011).  

Although many researchers have studied the connection between SES and whether students 

attend any college, we do not know specifically why SES appears so instrumental in determining which 

college students attend. This is primarily because college enrollment in the U.S. is determined by a 

complex, two-sided matching process. Students have an enormous array of colleges from which to 

choose when they submit their college applications. From the applications they receive, colleges then 

have discretion regarding whom to admit. Finally, students choose where to enroll from among the 

colleges that have admitted them. In principle, SES need not explicitly enter into any stage of this process, 

though there are a number of mechanisms that might affect the degree to which a student’s 

socioeconomic resources are associated with enrollment at highly-selective colleges.  

In this article, we are primarily concerned with how socioeconomic resource-based mechanisms 
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might influence what we refer to as college sorting. We conceive of college sorting as the two-sided 

process in which students and colleges interact through the application, admission, and enrollment 

processes to determine the particular colleges in which students enroll. The attributes, constraints, and 

preferences of both students and colleges jointly determine the final distribution of students among 

schools. We conceive of socioeconomic resources (which we refer to as simply resources for the 

remainder of the paper) very broadly. They include not only standard features of socioeconomic status 

(family income and wealth, parental educational attainment, and parental occupation) but also access to 

information, social and cultural capital, and social networks that might benefit students in college 

application/admission/enrollment processes. 

Such resources may affect college sorting in a number of ways. Perhaps most significantly, 

academic achievement is strongly associated with resources, particularly family income and 

socioeconomic status: high-income students have much higher scores on standardized tests (including 

the SAT and ACT) than middle- and low-income students, and this gap has been growing over time 

(Reardon 2011). Because academic achievement is a key criterion for admission to selective schools, it is 

not surprising that high-resource students are more likely to be admitted to such schools.  

The U.S. college admissions process, however, is complex and—as with educational attainment in 

general—the relationship between resources and achievement may be only one part of the explanation 

for the apparent resource advantage in college enrollment. Many other mechanisms may play important 

roles. High-resource students may engage in activities that make them more attractive to colleges, such 

as using admissions consultants or spending more time pursuing extracurricular interests. These students 

may also have more knowledge of the postsecondary market on which to base their college decisions, 

may tend to submit a greater number of applications, or may evaluate the benefits of college attendance 

differently. Colleges themselves may also play a role by using recruitment or admissions strategies based 

on non-academic factors that might be related to resources (e.g. giving preference to legacy admissions, 
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or, conversely, giving admissions priority to qualified low-income students). Of the many ways through 

which socioeconomic status might affect college attendance, the relative importance and specific role 

each plays is unclear.  

Our goal is to build intuition about the relative strength of some of the resource-based 

mechanisms that shape the distribution of students among more- and less-selective colleges and 

universities. We explore five such mechanisms in this paper, each described in more depth below: 

differential high school achievement, the disproportionate ability of high-resource students to enhance 

their apparent academic preparation for college, unequal access to information about colleges, the 

submission of more applications by higher resource students than lower resource students, and 

differences in how high- and low-resource students value more or less selective colleges. 

To explore these issues, we use a two-sided agent-based model in which student agents make 

decisions about what colleges to apply to; colleges make decisions about which applicants to accept; and 

students make decisions about which admission offer to accept. By altering the distribution of student 

characteristics and the factors that govern their application behaviors, we use the model to explore the 

relative effects of various mechanisms on college enrollment patterns. These simulations are not 

intended to fully explain existing patterns of college enrollment, but rather to provide some insight into 

the ways in which resources influence where students enroll in college.  

 

Agent-based Models 

An agent based model is ideal for answering our questions because it allows for the multi-step 

interaction of students with colleges (application, admission, enrollment) and for both students and 

colleges to learn from the past. As described in more depth below, the model’s student agents—

according to rules that can vary by resources—apply to colleges, which then decide whom to admit from 

among their pool of applicants. Then students decide where to enroll from among the colleges that 
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admitted them. Time then marches forward, and the process is repeated with subsequent cohorts of 

student applicants. In each subsequent cohort, students have information about how successful students 

similar to themselves in past cohorts have been at being admitted to various colleges, and colleges can 

decide to admit more or fewer students according to how successful they were at filling their seats in 

prior years. By repeatedly running the model over many cohorts, we are able to study the emergent 

patterns of college sorting that results from this dynamic learning process and the various resource-based 

mechanisms we have set out to study. While students in our model do not interact explicitly, their 

decisions do affect each other—because college seats are finite, the application decisions of each student 

affect the admission likelihoods of other students. We do not specifically model information or decisions 

traveling through networks, but many of the potential social learning effects of such transmission are 

implicit in the resource-based mechanisms we study. 

Very few studies have used agent-based models as a means to study issues in education, and 

even fewer have used this method to study college sorting. Maroulis et al. (2010) use real-world data on 

schools and students in Chicago to explore the potential effects of introducing intra-district choice to the 

school system. Howell (2010) conducts a structural estimation based on nationally representative data to 

determine what would happen to college diversity if colleges were prevented from using affirmative 

action in admissions decisions.  

Two agent-based education studies closely relate to our main research objectives and strategies. 

First, Manzo (2013) uses agent-based simulations to look at choices of levels of education based on data 

from the French education system. While he considers stratification in educational attainment as 

opposed to our focus of between-college stratification, he too considers the connection how differences 

in measures of socioeconomic status contribute to stratification. He finds that the SES-achievement 

correlation and differential perceptions about the benefits of education are not enough to explain 

differential educational attainment and argues that network effects must also play a role in determining 
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educational stratification.  

Second, Henrickson (2002) designed an agent-based model to demonstrate that such a model 

could indeed be used to approximate the college enrollment decisions made by real students applying to 

different types of colleges. She accomplished this task by having students use very simple strategies to 

apply to three synthetic colleges (e.g. apply to all schools or apply to schools randomly) and compared 

her results to real world observed college choices.  

We extend Hendrickson’s and Manzo’s work in two main ways. First, we use simulation of 

students’ application decisions that is more sophisticated than Hendrickson’s (but still highly-stylized), 

and focus on horizontal rather than vertical stratification. In other words, we work to describe 

mechanisms behind stratification within the group of students that attend college rather than explain 

why students reach different levels of educational attainment. Second, we run a series of scenarios that 

investigate the relative influence of each of a set of mechanisms that have been hypothesized to link 

resources and college destinations. Our goals with this work are twofold. First, we want to develop a 

tractable model of the application, admission, and enrollment process that can be extended to study 

aspects of college sorting beyond those at hand. Second, we wish to build intuition about how different 

mechanisms might operate and assess their relative importance.  

 

Hypotheses about Resources and the College Application Process 

We begin our model with the assumption that students are rational, utility-maximizing actors 

with idiosyncratic preferences, imperfect information, and limited resources. That is, students apply to 

apply to colleges in a way that maximizes the expected quality of schools they might enroll in, subject to 

their subjective and possibly error-prone assessments of the quality of each college and of their likelihood 

of admission to each. Colleges, too, are assumed to be rational, utility-maximizing agents, also with 

idiosyncratic preferences and imperfect information about students. Thus, the processes that result in 
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college sorting patterns are the result of a two-sided matching process in which both sets of agents have 

imperfect information and idiosyncratic preferences.  

We acknowledge that this simple model, which is largely in line with rational choice models of 

educational attainment (e.g. Boudon, 1974 and Breen, van de Werfhorst, & Jaeger 2014), is an 

improbable simplification of actual decision making processes.1 However, we use this simple model 

because the goal of this paper is to assess the influence of particular factors related to socioeconomic 

status while holding the individual decision making process constant (and constant across people). In our 

model all, students use the same algorithm to make decisions. Our simple model is a useful and flexible 

approximation of how students make decisions in a stylized two-sided matching process and allows us to 

examine the factors that affect decision making not only in terms of college sorting, but in other decision-

making domains as well.2  

We use this basic model to test some of the ways students can be strategic in their high school 

activities in ways that influence college sorting. In this paper we focus on a subset of the possible 

mechanisms that may drive this sorting and explore five possible explanations for the overrepresentation 

of higher-resource students at higher-quality colleges. In particular, we concentrate on those associated 

with student characteristics and behaviors: academic achievement differences, application behavior 

differences, and application enhancement differences among students of different resource backgrounds.  

Some of these mechanisms, like different levels of high school achievement, likely arise due to 

differential access to educational opportunities, which vary with student resources. Others, such as 

activities that enhance a student’s application in other ways (e.g. SAT tutoring, or submitting a large 

number of applications), may arise because of social learning. One proposed explanation for the 

contribution of social network effects to social inequality is through social learning—the transfer of 

certain practices through networks (DiMaggio & Garip 2012). If certain practices are seen as beneficial to 

the college application process, they may spread through a network through social learning. Thus, while 
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we do not incorporate the potential for network effects into our model as Manzo (2013) does, we do 

model some specific mechanisms through which the black box of “network effects” may operate. To the 

extent that students form homophilous networks according to resources we implicitly include social 

learning network effects by having all students at certain resource levels behave in similar ways. We plan 

to more explicitly model network effects (such as through the spread of application information in 

majority-low-resource schools) in later iterations of this project. 

Differential high school academic achievement. There is a strong correlation between family 

income and academic achievement. Whether it is because of the greater resources wealthy families are 

able to put in to educating their children, including through residential choices, or because parents in 

high-income families generally have higher education levels themselves, children from high-income 

families tend to outscore their low-income peers across a wide battery of achievement measures 

(Reardon 2011). Given the weight college admissions offices place on such achievement measures, this 

correlation may go a long way to explaining the income advantage at selective colleges.  

Application enhancement. Regardless of academic ability, higher-income students may engage in 

activities that enhance their likelihood of admission to more selective colleges. For example, participation 

in extracurricular activities (overseas trips, athletics, music or arts activities, volunteer activities), 

enrollment in SAT/ACT prep classes, or retaking of the SAT/ACT may all work to improve students’ 

desirability to colleges. The time and money often required to participate in these activities may be 

prohibitive for low-resource students in a way they are not for higher-resource students.  

Unequal information. The college destinations of low-and high-resource students may be 

different from each other because they apply to different sets of schools. Part of this apparent difference 

may be the result of differential access to information. There are four types of information that are 

important for students as they decide where to apply to and enroll in college: awareness of specific 

colleges, information about the potential costs and benefits of different colleges, information about their 
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own desirability to colleges relative to other students, and information about the likelihood of admission 

to different colleges, given their desirability. Relative to higher-income students, lower-income students 

have less information about these three factors on which to base their application decisions (Avery & 

Kane 2004; Hoxby & Turner 2013; McDonough 1997). Further, it may be that low-resource students not 

only lack information about colleges, but the information they have is flawed or incorrect. For example, 

low-income students are generally poor at estimating both the cost and benefits of college attendance 

(Avery & Kane 2004; Grodsky & Jones 2007). As a result, low-resource students may not think some 

colleges would be as accessible or beneficial for them as similarly skilled high-resource students.  

Perceived utility of college enrollment. Even with good information, and given equal chances of 

admissions, high- and low-resource students may not hold equal perceptions of the value of applying to 

and attending a highly selective institution. Students may have preferences that lead to different utility 

valuations over a host of college characteristics. Because of their role in maintaining social class, high 

resource students may value higher-quality colleges more than low resource students (Breen & 

Goldthorpe 1997). These differential preferences may also involve differential sensitivity to college cost. 

This might occur, for example, if low-income students disproportionately perceive the economic and/or 

social costs of attending such an institution to be higher than the potential benefits. Hoxby and Turner 

(2013) find little evidence that lower income students value selectivity less than higher income students, 

however, at least among high-achieving students. This is based on their observation that low-income 

students who have been provided with detailed cost information make similar application decisions as 

high-income students. It is still an open question whether differential preferences affect college sorting at 

other points of the achievement distribution. 

Number of applications. The number of college applications students submit is associated with 

the likelihood of four-year college enrollment in general (Smith 2012). Applying to more schools likely also 

increases the odds of admission to selective schools, at least for students on the margin of being 
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admitted to any such school. If the time and cost associated with submitting multiple college applications 

prevents low-resource students from submitting as many applications as high-resource students, then 

this mechanism may also explain differential sorting into selective colleges by socioeconomic status. 

Cost. While tuition and financial aid are undeniably important parts of students’ college choices, 

we do not include these elements of cost explicitly in our model. This choice is, in part, because we wish 

to focus on the other, less well-studied, processes described above. There are, however, two ways in 

which college cost considerations enter our model. First, to the extent that sticker price and college 

quality are generally correlated, low-resource students may see less utility in attending a higher quality 

school, which is captured in our resource-dependent utility of college enrollment. Second, because sticker 

price is not the whole story with respect to college cost, students with more information about financial 

aid options may still prefer higher quality colleges, despite the higher sticker price (see Hoxby & Turner 

2013). Thus, differential utility and differential information both account for some of the effects of college 

cost on students’ college choices in our model. 

 

Data and Method 

In this section, we describe our agent-based model, the empirical basis for its input parameters, 

and the analyses that we perform using its output. In order for readers to understand and potentially 

replicate our simulations, we depict the operation of our model in three ways: visually, through written 

descriptions, and with equations (available in the Appendices). The Stata code for our model can be found 

at: https://www.openabm.org/model/4220/version/1. 

Motivation for Model 

The goal of our model is to develop intuition about how student characteristics and behavior 

influence the sorting of students into colleges of varying quality. Figures 2 through 5 present an overview 

of the agents and processes in our simulation. 
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Agents 

Our model includes two types of entities: students and colleges. Students have two attributes 

that we call “resources” and “caliber.” “Caliber” and “resources” have a bivariate normal joint 

distribution; we specify the correlation between these attributes for each cohort of students in a given 

model run. The “resource” attribute is intended to represent a unidimensional composite of the various 

forms of socioeconomic capital available to a student and that may affect the college application process 

(e.g. income, parental education, access to social networks, and knowledge of the college application 

process). The “caliber” attribute is intended to represent a unidimensional composite of observable 

markers of academic achievement, potential for future academic success, and other characteristics 

valued by colleges (e.g. grades, standardized test scores, application essay quality, extracurricular 

activities, unique talents or skills, etc.). We refer to this as “caliber,” rather than “academic preparation” 

simply to indicate that colleges may value non-academic student characteristics as well. For ease of 

interpretation, however, we represent caliber on an SAT-like scale (ranging from 400-1600 with a 

standard deviation of roughly 200). In addition, students have two indirect attributes that depend partly 

on caliber and resources. First, students’ observed caliber (which both students themselves and colleges 

use in application and admissions decisions) equals “true” caliber plus some amount of “application 

enhancement” (which is a function of resources). The application enhancement represents students’ 

ability to make themselves appear better qualified for college through activities like hiring application 

advisors and taking admissions test-prep courses. Second, the number of college applications students 

submit is a function of their resources.  

Colleges have a single attribute, “quality,” which is intended to capture the average desirability of 

a college to prospective students. We operationalize quality as the average of the caliber of students 

enrolled in the school, with recent years’ classes weighted more than earlier years. Although in the real 

world the average caliber of enrolled students may not correspond strictly to the quality of a college’s 
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educational experience, in practice, average student caliber is widely used as a rough proxy for quality. 

Prospective applicants have more information about the characteristics of enrolled students (average SAT 

scores, for example) than they do about the quality of instruction, for example.  

Students and colleges in our model each have straightforward objectives: students wish to enroll 

in the highest quality college they can, and colleges wish to maximize the average caliber of their enrolled 

students.  

Both colleges and students have imperfect information and idiosyncratic preferences regarding 

one another. As a result, any two students may not rank colleges identically and any two colleges may not 

rank students identically. Operationally, this is implemented in the model by adding random noise to each 

student’s perception of each college’s quality, and by adding noise to each college’s perception of each 

applicant’s observable caliber. Moreover, students do not have perfect information about their own 

observable caliber. Again, this is operationalized in the model by adding random noise to each student’s 

perception of her own caliber.  

A key feature of the model is that the amount of noise added to students’ perceptions of their 

own caliber and of college quality is allowed to be a (decreasing) function of their resources. In this way, 

higher-resource students have more accurate information about their own caliber and about colleges’ 

quality, which enables them (as we will see) to better target their applications. In addition, students’ 

perceived utility from enrolling in a college is a function of its perceived quality; we allow this function to 

vary based on student resources.  

Model Operation 

Our model moves through three stages: application, admission, and enrollment (see Figure 2). 

The completion of these three stages represents one year. During the application stage (see Figure 3), 

students observe (with imperfect knowledge) the quality of each of the colleges in a given year and select 

a portfolio of colleges to which they apply. They do this by estimating the probability of admission to a 
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given college (using their perception of the college’s quality, their own observable caliber, and 

observations of recent college admissions); the expected value of submitting an application is this 

probability multiplied by the perceived utility of attending that college. Students select a portfolio of 

college applications with a maximal expected value.3,4 

In the admission stage (see Figure 4), colleges rank applicants by their observable caliber (again 

with some uncertainty), and admit the highest-ranked applicants, up to a total number of students that 

colleges believe will be sufficient to fill their available seats. The decision about the number of students to 

admit is based on a college’s recent enrollment yields (the proportion of admitted students who enrolled 

in the college).  

In the enrollment stage (see Figure 5), students compare the schools to which they have been 

admitted and enroll in the one that they believe has the highest utility of attending. At the end of each 

simulated year, the selectivity, yield, and quality of each college are updated based on the admission and 

enrollment outcomes. The colleges, with their updated characteristics, are then considered by a new 

cohort of students in the next year of the model, when the three stages of the process are repeated. 

Both students and colleges are able to observe and adapt to one another’s previous actions. 

Students observe the admissions outcomes of prior cohorts of students, from which they infer how the 

probability of admission is related to the difference between a student’s caliber and the quality of a given 

college. From this, they estimate their likelihood of admission to every college given their perceptions of 

their own caliber and of each college’s quality. This predicted likelihood is used in conjunction with the 

perceived utility of attending particular colleges to determine students’ application sets.  

Colleges determine the number of students to admit by observing their own prior yield rates—

the percent of their accepted students who ultimately enrolled in their college. Colleges will admit more 

students if they did not fill their seats in prior years and admit fewer students if they enrolled more 

students than they had seats.  
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A more detailed description of the agents and processes in our model can be found in Appendix 

A.  

At the end of each model run, we have highly detailed information of student and college 

behavior in each year. For our purposes here, we focus on the patterns of enrollment at the end of each 

year. These are somewhat unstable in the early years of the model. Student cohorts observe the 

admissions outcomes for previous cohorts, and colleges update their admission rates based on previous 

enrollment yields. Student and college behavior co-evolve during the course of each run and reach a 

point of stability (and functional accuracy, with colleges consistently admitting enough students to enroll 

approximately the same number of students as available spots), typically within 10-20 simulated years. 

Therefore, we stop our model after 30 simulated years. We focus our analyses on the patterns of 

stratification in enrollment in the final year of the model.5 We use this behavior to construct three 

specific measures of student sorting into colleges. First, we examine the relationship between resources 

and the rate at which students enroll in any college. Second, we examine the relationship between 

resources and the rate at which students enroll in one of the top ten percent of colleges (as ranked by 

quality) in our model. Finally, we examine the relationship between student resources and the quality of 

the colleges students attend. Taken together, these outcomes allow us to answer three important 

questions about our simulated world: (1) Who is attending college? (2) Who is attending elite colleges? 

And (3) how closely aligned is college quality to student resources? We focus on the five pathways 

through which students’ resources and caliber might affect the sorting of students into college, described 

above, to evaluate the extent to which the mechanisms described above, either individually or in 

combination, affect the sorting of students into colleges.  

Model Parameters 

We select parameters (and in some cases, functional forms) that determine student and college 

attributes, perceptions, and behaviors that approximate what we find empirically using real-world data;6 
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where that is not possible, we use plausible parameter values.7 Table 1 outlines the parameter values we 

use and their sources.8  

Experiments 

This simulated world, with flexible parameters and multiple pathways through which student 

resources can affect college quality, provides the opportunity to understand how students might be 

sorted by resources across colleges and gives us intuition about which kinds of interventions would be the 

most effective in reducing this stratification. To build this intuition, we run our model under a set of 

experimental conditions. The parameter values associated with resource pathways in each experiment 

are outlined in Table 2. 

We examine how changes in resource pathways affected three main outcomes: likelihood of 

enrolling in college, likelihood of attending a top-10% college, and the relationship between student 

resource and college quality. In order to minimize the influence of random error on our results, we run 

the model 100 times using each set of parameters discussed below.9  

There are two primary obstacles to conducting rigorous empirical evaluations of parameter 

effects for ABMs of any substantial complexity. The first is that in any user-specified “experimental” 

model run, the parameters that constitute model conditions and operation are chosen deliberately, and 

thus can be expected to be correlated (e.g. in the experiments that we describe above). The second 

obstacle is that it would require a prohibitively large computational time in order to fully explore all 

combinations of even a small set of parameters within a modest range. One proposed solution to these 

obstacles is to conduct a Latin Hypercube analysis (Bruch & Atwood 2012; Segovia-Juarez et al. 2004). We 

employ this approach as follows. We divided the range of possible values for each of the five parameters 

that determine mechanism magnitude into 10 evenly spaced cut points. We then constructed arrays of 

these cut point values and randomly sample 10 combinations of the five parameters from these arrays, 

without replacement. We ran the agent-based model using the 10 combinations of parameter values. 
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This sampling method ensures that, in expectation, the 5 parameters used during a model run are not 

correlated with each other. Using the results of the 10 runs of the model, we ran regressions predicting 

measures of disparities in enrollment outcomes between high- and low-resource students using our five 

parameter values as independent variables. Specifically, in the final year of each model run, we compute 

the gap in likelihood of each of our three outcomes of interest (college enrollment, enrollment in a top 

10% college, and college quality) between (1) the 10th and 90th percentile of family resources, (2) the 50th 

and 90th percentile of family resources, and (3) the 10th and 50th percentile of family resources on all five 

parameters. We select these three specific outcomes based on examination of the outcome functions 

obtained under experimental conditions, discussed below.  

 

Results 

In the sections that follow, we present our results in two ways. First, we present the graphical 

results of eight different model scenarios: a model where student resources are not allowed to influence 

the college sorting process, a model where the parameters have been set to simulate real world 

conditions as observed in nationally representative data sets (as outlined above and in Table 1), and our 

six main model experiments. These figures present our three main outcomes across the full distribution 

of student resources and allow us to note general patterns in how particular resource pathways affect 

college sorting. Second, we present the results of our Latin Hypercube analysis, which work to quantify 

the results of the graphical analysis for different sections of the resource distribution. 

Model 1: Basic – No Resource Influence 

As expected, the model that does not include any of the resource pathways produces an equal 

distribution of students from varying resources across colleges. Higher resource students are no more 

likely than lower resource students to enroll in any college or a top 10% college. Further, there is no 

relationship between student resources and college quality. At every point of the resource distribution, 
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the probability of each of these outcomes is equal. 

Model 2: Real World Baseline – All Resource Pathways 

In our next model—our baseline model—we allow resources to affect college quality via all five 

pathways. As we describe above and in Table 1, when possible we chose values for each of our pathways 

based on empirical data. Using these plausibly realistic values for parameters, we find patterns that are 

similar to what we see empirically, which serves to demonstrate the capacity of our model to mimic real 

world behavior. For example, in terms of patterns of applications and admissions, the relationships 

between college quality and the number of applications received, number of students admitted, and 

number of students enrolled (Figure 5) is similar to the real world, using data from the Integrated 

Postsecondary Education Data System (IPEDS, collected by the National Center for Education Statistics). 

The relationships between college quality and selectivity (admission rate) and yield (enrollment rate) 

(shown in Figure 6) are also quite similar to IPEDS data (graphs showing the same relationships using 

IPEDS data are in Appendix B).  

These plausible parameter values dramatically change student enrollment outcomes from a 

world in which there is no resource influence. In this model, as compared with our basic model, students 

from high resource backgrounds are much more likely both to enroll in any college and to attend a top-

10% college. Students from low resource backgrounds are correspondingly less likely. While students in 

the basic model all have about a 75 percent likelihood of enrollment in any college, turning on these five 

pathways increases the likelihood of college enrollment for the students in the 90th percentile of family 

resources to over 90 percent while the likelihood for students from students whose families are in the 

10th percentile of resources decreases to nearly 55 percent. This change in likelihood is even more 

dramatic for enrollment in one of the schools in the top 10 percent of our distribution. Whereas in the 

basic model all students have a roughly equal probability of enrolling in a highly selective school, with the 

five resource pathways turned on, the likelihood of enrollment for 90th percentile students is nearly 20 



18 
 

times what it is for 10th percentile students. There is also a strong relationship between student resources 

and college quality. Figure 7 shows each of these relationships. Again these simulations mimic the 

patterns evident in empirical data. For example, the relationship illustrated in Figure 7 is remarkably 

similar to the depiction of the same relationship using real-world shown in Figure 1. 

The similarity between the application, admission, and enrollment patterns that result from this 

model and those observed in real-world data bolster our confidence that we have a reasonable starting 

point from which we begin testing alternative conditions.  

Models 3-8: Model Experiments 

Figures 7-9 show the results of experiments 3-8. In general, the correlation between student 

resources and caliber has the strongest influence on the relationship between students’ resources and 

their college destinations, while other resource pathways have more subtle, but still notable, effects.10  

Eliminating the correlation between resources and caliber decreases the difference in probability 

of enrollment for very high and very low resource students from about 50 percent to closer to 20 percent 

(Figure 7). Figure 8 shows that eliminating this correlation also has a large effect on differences in the 

probability of enrolling in a highly selective school. Without the correlation between student resources 

and student caliber, the students in the 90th percentile of resources are about four times as likely as those 

in the 10th percentile to enroll in highly selective school, compared with about 20 times as likely when all 

resource pathways are turned on. The effect on quality of enrollment is also large—without the resource-

caliber correlation, students in the 90th percentile enroll in schools with an average quality 75 points 

higher than students in the 10th percentile, which is roughly half the difference that results when all 

resource pathways are engaged. While the correlation between resources and caliber is clearly the most 

powerful factor, other pathways have non-negligible effects.  

In the model where the application enhancement pathway is not active, there is a significant shift 

toward equality. If students are unable to enhance their perceived caliber, the relationship between 
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student resources and probability of enrollment at any college decreases. The probability of a very high 

resource student enrolling decreases by about three percentage points (roughly from 93 percent to 90 

percent) and the probability of a very low resource student increases by a similar margin (roughly from 55 

percent to 59 percent). Probabilities for students toward the middle of the resource distribution do not 

change appreciably. The relationship between student resources and probability of enrolling in a top-10% 

school is also affected when we do not allow high resource students to enhance their caliber. Students in 

the bottom 60% of the resource distribution are about one percentage point more likely to attend a 

selective college, while students in the top 20% of the distribution are much less likely (up to six 

percentage points less likely).  

In the model where resources do not affect the quality of information students have about their 

own caliber and college quality, the relationship between student resources and the probability of 

enrolling in any college remains remarkably unchanged. However, removing this pathway does affect a 

student’s probability of enrolling in a top-10% college. Students from the middle of the resource 

distribution (between about 20 and 70 percent) have an increased probability of attending a highly 

selective school (up to two percentage points), while students at the very high end of the resource 

distribution have a decreased probability (about five percentage points less likely). 

Eliminating the relationship between resources and the number of applications a student submits 

has a small but observable effect at the lower end of the resource distribution, increasing both the 

probability of college enrollment and the quality of college students in the bottom quartile attend. 

Intriguingly, the relationship between resources and the perceived utility of college quality does not 

appear to appreciably affect the outcomes of interest. 

The last model in Figures 7-9 shows attendance behavior when only the relationship between 

resources and caliber is engaged (all other resource pathways are removed). Particularly striking in these 

figures is the fact that they look quite similar to the model in which all pathways except for this 
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relationship are engaged. Thus, it appears that the other four pathways combined have an effect on 

college attendance similar to the effect of the resource-caliber pathway alone. 

Latin Hypercube Analysis 

In addition to visualizing our outcomes of interest under specific experimental conditions, we also 

conduct a more formal exploration of our parameters’ influence using Latin Hypercube analysis. Although 

we lose some of the nuance of observing the functions depicted in Figures 7-9 (i.e. observing exactly 

where on the resource distribution particular mechanisms seem to have the most influence), we gain the 

ability to quantify and compare mechanism effects.  

We use slightly different outcomes in the Latin Hypercube analyses. Here, we regress gaps in 

enrollment outcomes (i.e. differences between those at the 90th and 10th percentiles of the resource 

distribution, at the 90th and 50th percentiles, and 50th and 10th percentiles) on our five mechanisms of 

interest. Gaps are a convenient way to quantify inequality. In our model without resource pathways, the 

gaps are 0 for all three outcomes that we consider (flat relationship between resources and outcomes). 

As we allow student resources to affect the application and admission decisions, the relationships 

between resources and outcomes get steeper and significant gaps emerge. We chose these three gaps 

(90-10, 90-50, and 50-10) to analyze. The 90-10 gaps tells us what the difference in substantive outcomes 

are between those at the very top and the very bottom of the resource distribution, while the 90-50 and 

50-10 gaps let us say something about whether the gaps are being driven by the experiences of those at 

the top of the resource distribution (where we expect to see disparities in access to elite schools), the 

bottom of the resource distribution (where we expect to find disparities in access to any college), or both. 

Respectively, Tables 3 through 5 explore gaps in likelihood of college enrollment, likelihood of enrolling in 

a top-10 % college, and quality of college enrolled in. 

As shown in Table 3, four of the mechanisms—the correlation between student resources and 

caliber, the relationship between resources and information, the relationship between resources, the 
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number of applications a student submits, and the ability for higher resource students to enhance their 

apparent caliber—have statistically significant relationships with the likelihood a student enrolls in 

college. For each of these four, an increase in the correlation is associated with an increase in the gap 

between the likelihood of students at the 90th and 10th percentile of the resource distribution enrolling in 

college. Most of the change in this gap comes from the influence of mechanisms on the low end of the 

resource distribution: for each of the mechanisms that significantly predict the 90-10 gap, none are 

significant in predicting the 90-50 gap, but three of them significantly predict changes in the 50-10 gap. 

For example, an addition of one application in the relationship between number of applications 

submitted and standardized resources increases the 90-10 college gap in probability of college 

enrollment by 7.4 percentage points, and increases the 50-10 gap by 5.5 percentage points. The number 

of applications mechanism does not significantly change the 90-50 gap. These results confirm the results 

in the experimental conditions described above where the number-of-applications mechanism appears 

particularly to affect the likelihood of college enrollment for students at the lower end of the resource 

distribution. Additionally, a 0.1 increase in the correlation between resources and caliber increases the 

90-10 gap by 5.8 percentage points and the 50-10 gap by five percentage points.  

Although the size of the relationships are only about half as large, Table 4 shows that three 

mechanisms significantly predict gaps in the probability of attending a top 10% college—the correlation 

between resources and caliber, the ability of high resource students to enhance their apparent caliber, 

and the relationship between resources and information quality. As in the experimental conditions above, 

in the case of enrollment in top-10 percent colleges most of the changes in the gaps appears to come 

from the top of the resource distribution—the 90-50 gap—rather than the lower half of the distribution. 

Finally, Table 5 shows how the 90-10, 50-10, and 90-50 gaps in enrolled-college quality change in 

response to changes in response to each of the five mechanisms. Four mechanisms are significantly 

related to the 90-10 gap—the correlation between student resources and caliber, the relationship 
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between resources and information, the relationship between resources and the number of applications 

a student submits, and the ability for higher resource students to enhance their apparent caliber. Of 

those four, all are also related to the 90-50 gap, while only the relationship between resources and 

number of applications is significantly related to the 50-10 gap.  

 

Discussion and Conclusion 

In this paper we used agent-based modeling to simulate the college application and selection 

process. Our model is highly stylized, focusing on only the ways in which student resources and caliber 

might affect the way in which students behave during the college sorting process. Left out of this model 

are parameters such as college costs, financial aid, or colleges’ strategic admissions decisions based on 

student resources, race or other factors. Despite the simplifying assumptions we made to create our 

model, we were able to successfully replicate real-world patterns of application and enrollment. We were 

then able to conduct model experiments by manipulating parameters that determine the specific ways in 

which student resources might influence student behavior and enrollment outcomes. Based on “virtual 

counterfactuals” obtained from these experiments, we are able to develop some intuition about the 

relative importance of mechanisms that drive observed resource stratification in the college sorting 

process. We then supplemented our experiments with a Latin Hypercube analysis that allows us to 

quantify the influence of the mechanisms within our simulated system. 

The most striking finding from both the model experiments and the Latin Hypercube analysis is 

the very large role that the relationship between student resources and student caliber plays in the 

socioeconomic sorting of students into schools. As large as this role is, however, the resource-caliber 

correlation does not completely determine college sorting in our model. This is consistent with Manzo’s 

(2013) similar finding that the SES-achievement correlation cannot on its own explain differential levels of 

educational attainment in France.  
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Another key result of our models is the finding that, while none of the other, non-achievement 

gap, mechanisms have particularly large effects on their own, together substantially affect stratification. 

Three of them in particular—reducing the ability of high resource students to enhance their apparent 

caliber, decreasing disparities in informational quality between high and low resource students, and 

weakening the link between students’ resources and the number of applications that they submit—

together  significantly erode the relationship between socioeconomic status and college enrollment in 

our model. These results suggest that student- or institution-level policies (such as application coaching 

and college information provision to students in low-income schools or encouraging affirmative action-

like polices for dimensions other than race/ethnicity) could have notable impacts on how students sort 

into colleges.  

While our experiments do not substitute for policy evaluation, they do help to build intuition 

about the relative importance of difference processes and the importance of evaluating the effects of 

enacting multiple policies at the same time. Indeed, one of our goals in building this model was to explore 

the complex and interdependent processes that result in observed patterns of stratification. The model is 

admittedly an over-simplification of the world of college enrollment, but it is nonetheless useful as a tool 

for exploring the dynamic nature of these processes. 

Indeed, our model forms a basic framework to which we or others can add additional complexity 

and processes. For example, one could add to the model a set of rules governing the ways that tuition 

and financial aid affect (and are affected by) other features of the system. The price (or perceived price) 

of colleges might affect who applies; colleges may offer differential financial aid to incentive students to 

apply and enroll; tuition and financial aid policies at one school might react to competition among schools 

for desired students; and so on. Such mechanisms could readily be added to the model, allowing 

researchers to explore the system dynamics governing enrollment and pricing mechanisms. 

Another potential expansion of the model would be allow the colleges to implement affirmative 
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action admissions policies. In the U.S., some schools use race- or socioeconomic-based affirmative action 

policies to increase the proportion of enrolled students who are minorities or from low-income families. 

These policies and their effects are the topic of ongoing legal and policy debate. Our models could readily 

be adapted to include student racial/ethnic characteristics and to allow schools to give admissions 

preferences to students of some subgroups.  

A third possible extension would be to include in the model social network processes that might 

affect the information students have about colleges, their quality, and the students’ likelihood of 

admission. Applicants might be thought of as coming from a number of discrete high schools; the model 

might be altered so that each applicant gets information about colleges disproportionately from prior 

cohorts of students from their own high school. If students have better information about schools that 

those in their social network have attended, and if those social networks are partly segregated on the 

basis of social class (or race), then segregated social networks in high school may lead to stratification by 

social class. Models exploring the role of segregated social networks in the enrollment process might be 

very useful for understanding some of the effects of segregation and may provide insight into whether 

policies to provide better information to potential applicants might be beneficial.  

Finally, our model is an example of a two-sided, many-to-few matching model. College 

admissions are not the only such process. Job-search processes have a similar character: may applicants 

seek positions in a smaller number of firms, and both parties exercise some choice in the matching 

process. Marriage and dating processes are also similar (though they are generally two-sided, one-to-one 

matching processes rather than many-to-few). The model described here might be profitably modified to 

model these and other two-sided matching processes. 
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Endnotes 

1 Research from psychology and economics demonstrates that models of decision making such as this 

(relying on strict utility maximization with fully rational actors) are not entirely realistic. People often 

exhibit unstable preferences, have inconsistent preferences over time, and use simplifying heuristics 

when making complex decisions (e.g. Simon, 1976; Tversky & Simonson, 1993; Roberts & Lattin, 1991; 

Swait & Erdem, 2007). We account for this a bit by adding noise to information and preferences. We 

don’t address the issue of time discounting because the students in our model have already decided they 

want to attend college; they have dealt with the consideration that the returns to college enrollment are 

delayed. While a student in our simulation may receive different returns for attending different colleges, 

all of the returns for a given student will be discounted at the same rate.  

2 In some ways, using rational decision making in our model provides us with a “best case” scenario. To 

the extent that real-world students stray from rational decision making, it is likely lower-resource 

students who stray the most, as they are disadvantaged in part by less access to important college choice 

information or by constraints on college choices due to finances and mobility. Thus, our rational-choice 

approach likely understates the stratification our mechanisms contribute to in the real world.  

3 The application set selection behavior in our model deviates from selection behavior in the real world. 

We do this for two reasons. The first is that actual prospective students use a wide variety of different 

sets of heuristics during the selection process, with actual decision rules both difficult to observe and to 

satisfyingly quantify. The second is that we believe that there is value in exploring whether, even under 

simple, “optimal” selection conditions, the resource pathways that we explore can explain observed 

enrollment patterns. Future models based on this initial, simple model can be constructed to examine the 

role of more realistic selection behaviors. The algorithm that is used to quickly calculate optimal 

application portfolios is presented in detail in Appendix D. 

4 High school graduates in the U.S. have essentially 3 options – apply to a selective college; apply to a non-
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selective college (where they are guaranteed admission as long as they meet basic requirements), or 

don’t apply/go to college. Our model simplifies this by eliminating the distinction between selective and 

non-selective colleges (though the distinction is somewhat murky anyway, since there are minimum 

requirements even for non-selective schools, so they are in some ways selective, but with a lower bar), 

and by having all students apply, even those with near 0 chance of admission. In practice, it would matter 

little if the model didn’t allow them to apply since they don’t get in/attend 

5 By the end of our 30-year model runs, we see stability in college quality values and yield rates as well as 

student behavior conditional on resources and caliber. Therefore, we believe that focusing on end-run 

outcomes represents a meaningful analysis of model operation. 

6 Many of our parameter estimates come from the Education Longitudinal Study of 2002 (ELS:2002). 

ELS:2002 is a nationally representative data set collected by The National Center for Education Statistics. 

It follows 10th grades in 2002 through secondary and postsecondary education and includes high school 

transcript data, surveys of students and parents, and postsecondary application behavior. We set r to 0.3 

in our baseline model, a conservative estimate based on ELS:2002, where the observed correlation 

between students’ SAT scores and the socioeconomic status index is 0.43 (US Department of Education 

2006). We set b to 0.1 based on research that shows that students who take SAT-coaching classes 

typically raise their SAT scores by approximately 25 points, which is about 12 percent of a standard 

deviation of SAT scores on the 1600-point SAT scale (Becker 1990; Buchmann, Condron, & Roscigno 2010; 

Powers & Rock 1999). We set c to 0.5 a based on the relationship between the socioeconomic index and 

the number of schools a student applies to in the ELS:2002 data set (US Department of Education 2006). 

Finally, we set the ratio of applicants to seats using data from ELS:2002, where the ratio of applicants to 

seats in very selective colleges (Barrons rankings of 3 or below) is 1.45:1. We tested the sensitivity of our 

estimates to a range of ratios and found that the number of non-attendees does not drive our results. 

7 We were unable to find empirical evidence to guide our selection of several model parameters. 
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Specifically, we were unable to find quantifiable values for the means, minima, and maxima used for the 

reliabilities with which students perceive their own caliber and college quality; the reliability with which 

colleges perceive student caliber; and the intercept, d and e values used students’ evaluation of the utility 

of attending colleges. However, we attempted to select values that seem sensible: the average student 

has moderately high, but not perfect, perception of college quality (e.g. familiarity with college rankings) 

as well as their own caliber (e.g. knowledge of their SAT scores); collectively, college admission officers 

have quite a bit of experience evaluating students and thus colleges have a highly accurate (but also not 

perfect) perception of student caliber; and (for example) information and attitudes in their social 

networks might induce higher-resource students to have a lower evaluation of the utility of attending a 

low-quality school than their low-resource peers, but also higher evaluations of a high-quality school 

(Hoxby & Avery, 2012). Extensive model testing suggests that our selections of these specific parameter 

values did not affect the overall interpretation of our results. 

8 Like all agent based models, ours is a stylized approximation of individual behavior that is designed to 

highlight a few key things. In order to fully examine specific facets of this phenomenon (how dynamic 

processes related to socioeconomic inequality can stratify students among colleges), we have to include 

simplified models of human behavior. In this case, we have decided to model the relationships between 

(a) reliability and resources, (b) apparent caliber and resources, and (c) students’ evaluation of college 

utility and resources only as linear relationships (we do not include any higher order polynomials). While a 

linear relationship seems like a plausible approximation, it’s possible that a different functional form 

would be more appropriate. Our results indicate that these relationships can be important drivers of 

stratification and future work could explore them in greater depth. 

9 Every figure that depicts one of our three main outcomes aggregates all 100 runs, with a line showing a 

running mean of outcome values by student resource percentiles across runs bounded by a shaded area 

indicating standard error values. 
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10 A closer examination of the sets of colleges to which students apply under these different experimental 

conditions can help to understand these patterns. The figures in Appendix C show the maximum, 

minimum and mean quality of schools that high and low resource students at all points of the caliber 

distribution apply to. 
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Table 1 

Model Parameters (baseline model) 

Parameter Value Source 

Basic model set up 

Number of students 8000 N/A 
Number of colleges 40 N/A 
College capacity 150 students/college N/A 
Student to seat ratio 4:3 ELS:2002 
College quality quality~N(1070, 130) ELS:2002 
Student caliber caliber~N(1000, 200) College Board 
Student resources resources~N(0, 1) N/A 
Correlation between resources 
and caliber r=0.3 ELS:2002 

Quality reliability 
(how well students see college 
quality) 

0.7 + a*resources; a=0.1 N/A 

Own caliber reliability 
(how well students see their own 
caliber) 

0.7 + a*resources; a=0.1 N/A 

Caliber reliability 
(how well schools see student 
caliber) 

0.8 N/A 

Apparent caliber (perceived 
caliber, increased or decreased 
through “caliber enhancement”) 

perceived caliber + b*resources; 
b=0.1 

Becker 1990; Buchmann, 
Condron, and Roscigno 2010; 
Powers and Rock 1999 

Number of Applications 4 + INT(c*resources); c=0.5 ELS:2002 

Student evaluation of college 
utility 

-250 + d + (1+ e)*perceived 
quality; d=-500, e=0.5 if 
resources>0 

N/A 

Note. Quality and caliber reliability bound by minimum values of 0.5 and maximum values of 0.9  
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Table 2 

Resource Pathway Parameters by Experiment 

Experiment Parameter Values 

 r a b c d e 
All resource pathways off 0 0 0 0 0 0 
Baseline model 0.3 0.1 0.1 0.5 -500 0.5 
Experiment 1  0 0.1 0.1 0.5 -500 0.5 
Experiment 2 0.3 0.1 0 0.5 -500 0.5 
Experiment 3  0.3 0.1 0.1 0 -500 0.5 
Experiment 4 0.3 0 0.1 0.5 -500 0.5 
Experiment 5  0.3 0.1 0.1 0.5 0 0 
Experiment 6 0.3 0 0 0 0 0 
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Table 3  

Latin Hypercube Sensitivity Analysis of Parameters of Interest on Gaps in Probability of Enrollment  
 90th Percentile –  

10th Percentile 
90th Percentile –  
50th Percentile 

50th Percentile –  
10th Percentile 

Parameter Space 

VARIABLES    Min Max 
      
Correlation(Resources, Caliber) 0.581*** 0.096 0.485*** .1 .5 
 (0.039) (0.066) (0.055)   
Resources/Information Relationship 0.405** 0.250 0.155 0 .2 
 (0.079) (0.136) (0.113)   
Resources/#Apps Relationship 0.074*** 0.019 0.055** 0 2 
 (0.006) (0.010) (0.008)   
Utility Slope Differential 0.003 -0.001 0.004 0 2 
 (0.005) (0.009) (0.008)   
Resources/Application Enhancement 0.580*** 0.082 0.498** 0 .2 
 (0.056) (0.096) (0.080)   
Constant 0.032+ 0.045 -0.012   
 (0.013) (0.023) (0.019)   
Note. Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 4  
Latin Hypercube Sensitivity Analysis of Parameters of Interest on Gaps in Probability of Enrollment in Top-10% College 
 90th Percentile – 

10th Percentile 
90th Percentile – 
50th Percentile 

50th Percentile – 
10th Percentile 

Parameter Space 

VARIABLES    Min Max 
      
Correlation(Resources, Caliber) 0.238** 0.269** -0.031 .1 .5 
 (0.045) (0.045) (0.018)   
Resources/Information Relationship 0.244+ 0.279* -0.035 0 .2 
 (0.092) (0.093) (0.038)   
Resources/#Apps Relationship 0.013 0.007 0.005 0 2 
 (0.007) (0.007) (0.003)   
Utility Slope Differential 0.005 0.004 0.001 0 2 
 (0.006) (0.006) (0.003)   
Resources/Application Enhancement 0.234* 0.265* -0.031 0 .2 
 (0.065) (0.066) (0.027)   
Constant 0.039+ -0.007 0.046**   
 (0.015) (0.016) (0.006)   
Note. Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Table 5 
Latin Hypercube Sensitivity Analysis of Parameters of Interest on Gaps in Enrolled-College Quality 
 90th Percentile – 

10th Percentile 
90th Percentile – 
50th Percentile 

50th Percentile – 
10th Percentile 

Parameter Space 

VARIABLES    Min Max 
Correlation(Resources, Caliber) 192.432*** 164.271*** 28.160 .1 .5 
 (17.737) (7.006) (13.920)   
Resources/Information Relationship 104.922* 99.210** 5.713 0 .2 
 (36.453) (14.400) (28.608)   
Resources/#Apps Relationship 16.158** 6.749** 9.409* 0 2 
 (2.699) (1.066) (2.118)   
Utility Slope Differential -0.028 -0.994 0.966 0 2 
 (2.441) (0.964) (1.916)   
Resources/Application Enhancement 140.959** 132.554*** 8.405 0 .2 
 (25.743) (10.169) (20.203)   
Constant 22.704* 0.234 22.469**   
 (6.089) (2.405) (4.779)   
Note. Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05, + p<0.1 
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Figure 1. Probability of attending a highly selective college, by income, high school class of 2004. Source: 

Authors’ calculations from ELS:2002. 
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1) Limited by a finite number of applications, students apply to a set of colleges that 
maximizes their expected utility 

2) Colleges order applicants by perceived caliber and admit a number of students based 
on prior enrollment yield 

3) Students enroll in the college with the highest perceived utility to which they have 
been accepted 

4) College selectivity, yield, and quality are updated based on outcomes of steps (1) – (3) 
 

Figure 2. Overview of processes in the agent-based model 
  

 Agent Attribute 
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 Figure 3. Graphic depiction of the application process in the ABM 
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 Figure 4. Graphic depiction of the admission process in the ABM   
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Figure 5. Graphic depiction of the enrollment process in the ABM   
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Figure 6. Number of applications, admittees, and enrollees, by college quality, baseline scenario. 
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Figure 7. College selectivity and yield, by college quality, baseline scenario. 
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Figure 8. Probability of enrolling in any college, probability of enrolling in a top-10% college and quality of 

college enrolled in, by student resources percentile, year 30, baseline model. 
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Figure 9. Probability of enrolling in any college, by student resource percentile and resource pathway, year 30.  
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Figure 10. Probability of enrolling in a top-10% college, by student resource percentile and resource pathway, year 30.  
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Figure 11. Quality of college enrolled in, by student resource percentile and resource pathway, year 30
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Appendix A 

Initialization 

At the start of each model run, we generate J colleges with m available seats per year (for the 

sake of simplicity, m is constant across colleges). During each year of the model run, a new cohort of N 

students engages in the college application process. Initial college quality (Q), each student cohort’s 

caliber (C), and each student cohort’s resources (R) are normally distributed. We allow for a specified 

correlation between C and R. The values used for these parameters are specified in Table 1. We select 

these values to balance computational speed and distribution density as well as to match what we 

observe from real-world data (ELS 2002). 

 

Submodels 

Application. During this stage of our model, students generate an application portfolio, with each 

student selecting ns colleges to which they will apply. Every student observes each college’s quality (Qc) 

with some amount of noise (ucs), which represents both imperfect information and idiosyncratic 

preferences, and then uses perceived college quality (Q*
cs) to evaluate the potential utility of attendance:  

 Q*
cs = Qc + ucs; ucs ~N(0,τs) (A.1) 

 U*
cs = as + bs(Q*

cs) (A.2) 

where as is the intercept of a linear utility function and bs is the slope; both intercept and slope may differ 

between students. Students do not know their own caliber perfectly, but view it with both augmentation 

and noise: 

 C*
s=Cs + cs + es; es~ N(0,σs) (A.3) 

where cs represents enhancements to caliber that are unrelated to caliber itself (e.g. test preparation, or 

application essay consultation) and es represents uncertainty. The values that are used for these 

parameters and their relationships with student resources are listed in Table 1. Based on their noisy 
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observations of their own caliber and college quality, students estimate their probabilities of admission 

into each college: 

 Pcs=f(C*
s-Q*

cs) (A.4) 

where f is a function based on admission patterns over the prior 5 years. In each year f is estimated by 

fitting a logit model predicting the observed admissions decisions using the difference between (true) 

student caliber and college quality for each submitted application over the past 5 years. During the first 5 

years of our simulation, the admission probability function has an α of 0 and a β of -0.015. These values 

were selected based on observing the admission probability function over a number of model runs; the 

starting values do not influence the model end-state, but do influence how quickly the function (and the 

model itself) stabilizes. A student’s expected utility of applying to one college is the product of the 

estimated probability of admission and the estimated utility of attendance.  

Students apply to sets of schools that maximize their overall expected utility. For example, if a 

student chooses to apply to three colleges, then she will select the set of three colleges that they believe 

has the greatest combined expected utility. In principle, this means that a student agent in the model 

computes the expected utility associated with applying to every possible combination of three colleges in 

the model, and then chooses the set that maximizes this expected utility. We develop a fast algorithm, 

described in Appendix D, that achieves this maximization without requiring the agent to compute and 

compare all possible application portfolios. The assumption of rational behavior is an abstraction that 

facilitates focus on the elements of college sorting that we wish to explore. We recognize that real-world 

students use many different strategies to determine where they apply (e.g. Hoxby & Avery 2012).  

Admission. Colleges observe the apparent caliber (Cs + cs) of applicants with some amount of 

noise (like the noise with which students view college quality, this also reflects both imperfect 

information as well as idiosyncratic preferences): 

 C**
cs=Cs + cs + wcs; wcs ~ N(0,φs) (A.5) 
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Colleges rank applicants according to C**
cs and admit the top sc applicants. In the first year of our 

model run, college’s expected yield (the proportion of admitted students that a college expects to enroll) 

is given by: 

   Yieldc=0.2+.06*College Quality Percentile      (A.6)  

with the lowest-quality college expecting slightly over 20% of admitted students to enroll and the highest 

quality college expecting 80% of admitted students to enroll. Colleges thus admit m/Yieldc students in 

order to try to fill m seats. After the first year of a model run, colleges are able to use up to 3 years of 

enrollment history to determine their expected yield, with Yieldc representing a running average of the 

most recent enrollment yield for each college.  

Enrollment. Students enroll in the school with the highest estimated utility of attendance (U*
cs) to 

which they were admitted.  

Iteration. Colleges’ quality values (Qc) are updated based on the incoming class of enrolled 

students before the next year’s cohort of students begins the application process: 

Q’c= 0.9*Qc +0.1*College mean (Cs)     (A.5) 

We run our model for 30 years (this appears to be a sufficient length of time for our model to 

reach a relatively stable state for the parameter specifications that we explore).   
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Appendix B 

The following figures are based on IPEDS admissions statistics from the 2010-2011 admissions 

cycle. They were used to help confirm the calibration of our model. Figures B1 and B2 are intended to be 

compared to Figures 3 and 4, respectively. 

 

Figure B1. Applications and acceptances per enrolled student, by ‘median’ admitted SAT score. From 

IPEDS data from 2010-2011. Median SAT score is approximated usung half of the sum of the 25th and 75th 

percentile of SAT score. 
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Figure B2. Acceptance and yield rates, by ‘median’ admitted SAT score. From IPEDS data from 2010-

2011Median SAT score is approximated using half of the sum of the 25th and 75th percentile of SAT score 
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Appendix C 

 

Figure C1.Mean quality of schools applied to, by (true) student caliber and scenario, year 30. Single run.  



55 
 

 

Figure C2. Average maximum and minimum quality of schools applied, by (true) student caliber and scenario, year 30. Single run. 
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Appendix D 

Optimal College Portfolio Algorithm 

Notation. Let 𝑖𝑖 =  1, … ,𝑁𝑁 index students and let 𝑗𝑗 =  1, … , 𝐽𝐽 index colleges. Let 𝑄𝑄𝑗𝑗 denote the utility of 

college 𝑎𝑎𝑗𝑗. Suppose student 𝑖𝑖 applies to some set 𝐀𝐀𝑖𝑖  =  {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} of 𝑛𝑛 colleges (where the set is 

ordered such that 𝑄𝑄1 < 𝑄𝑄2 … < 𝑄𝑄𝑛𝑛). Let 𝑃𝑃𝑖𝑖𝑗𝑗  indicate the probability that student 𝑖𝑖 will be admitted to 

college 𝑗𝑗, conditional on applying to it. Assume that a student will enroll in the highest utility school to 

which she is admitted. Denote the utility of this school as 𝑄𝑄𝐸𝐸 (and let 𝑄𝑄𝐸𝐸 = 0 if the student is not 

admitted anywhere). 

 Now define 𝐸𝐸𝑖𝑖[𝐀𝐀𝑖𝑖] = 𝐸𝐸[𝑄𝑄𝐸𝐸|𝐀𝐀𝑖𝑖]. That is, 𝐸𝐸𝑖𝑖[𝐀𝐀𝑖𝑖] is the expected value of the quality of the college 

student 𝑖𝑖 will enroll in if she is applies to the set of colleges 𝐀𝐀𝑖𝑖. Define 𝐀𝐀𝑖𝑖\𝑎𝑎𝑛𝑛  =  {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛−1} ⊂ 𝐀𝐀𝑖𝑖; 

that is, 𝐀𝐀𝑖𝑖\𝑎𝑎𝑛𝑛 is the subset of 𝐀𝐀𝑖𝑖 consisting of all but the college with highest utility. Then 𝐸𝐸𝑖𝑖[𝐀𝐀𝑖𝑖] can be 

computed recursively as 

𝐸𝐸𝑖𝑖[𝐀𝐀𝑖𝑖] = 𝑃𝑃𝑖𝑖𝑛𝑛𝑄𝑄𝑛𝑛 + (1 − 𝑃𝑃𝑖𝑖𝑛𝑛)𝐸𝐸𝑖𝑖[𝐀𝐀𝑖𝑖\𝑎𝑎𝑛𝑛]. 

[D1] 

Now define 𝐌𝐌𝑖𝑖
𝑛𝑛 = {𝑎𝑎1∗ , … ,𝑎𝑎𝑛𝑛∗ } as the set of 𝑛𝑛 colleges that maximizes 𝐸𝐸𝑖𝑖[𝐀𝐀𝑖𝑖]. We wish to find this set 𝐌𝐌𝑖𝑖

𝑛𝑛. 

Calculating 𝐸𝐸𝑖𝑖[𝐀𝐀𝑖𝑖] for all sets 𝐀𝐀𝑖𝑖 of size 𝑛𝑛, however, requires evaluating Equation D1 for 𝐶𝐶𝑛𝑛
𝐽𝐽 = 𝐽𝐽!

𝑛𝑛!(𝐽𝐽−𝑛𝑛!)
 

possible sets of size 𝑛𝑛, a prohibitively large number. For example, in our model, where there are 𝐽𝐽 = 40 

colleges and the typical student applies to 4 colleges, 𝐶𝐶440 = 91,390; for students applying to 5 or 6 

colleges, the numbers are much larger: 𝐶𝐶540 = 658,008 and 𝐶𝐶640 = 3,838,380. 

 We can find 𝐌𝐌𝑖𝑖
𝑛𝑛 much more quickly, however. It can be shown that 𝐌𝐌𝑖𝑖

𝑛𝑛−1 ⊂ 𝐌𝐌𝑖𝑖
𝑛𝑛. That is, the 

optimal application set of size 𝑛𝑛 necessarily includes the optimal set of size 𝑛𝑛 − 1. This means we can 

construct 𝐌𝐌𝑖𝑖
𝑛𝑛 by first identifying 𝐌𝐌𝑖𝑖

1, which will contain the college 𝑎𝑎𝑘𝑘 that maximizes 𝐸𝐸𝑖𝑖[𝑎𝑎𝑘𝑘] = 𝑃𝑃𝑖𝑖𝑘𝑘𝑄𝑄𝑘𝑘. 

Identifying this college requires only 𝐽𝐽 calculations. Then we can construct the 𝐽𝐽 − 1 possible sets that 

include 𝐌𝐌𝑖𝑖
1 plus one additional college. We then find the college 𝑎𝑎𝑘𝑘 that maximizes  
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𝐸𝐸𝑖𝑖�{𝐌𝐌𝑖𝑖
1,𝑎𝑎𝑘𝑘}� = 𝑃𝑃𝑖𝑖𝑘𝑘𝑄𝑄𝑘𝑘 + (1 − 𝑃𝑃𝑖𝑖𝑘𝑘)𝐸𝐸𝑖𝑖�𝐌𝐌𝑖𝑖

1�. 

[D2] 

Identifying this college requires 𝐽𝐽 − 1 calculations. We then have 𝐌𝐌𝑖𝑖
2 = {𝐌𝐌𝑖𝑖

1,𝑎𝑎𝑘𝑘}. We follow the same 

process recursively until we have identified 𝐌𝐌𝑖𝑖
𝑛𝑛, a process that will take only ∑ (𝐽𝐽 − 𝑚𝑚)𝑛𝑛−1

𝑚𝑚=0 =

𝑛𝑛 �𝐽𝐽 − (𝑛𝑛−1)
2
� calculations. For example, in our model, where there are 𝐽𝐽 = 40 colleges, students 

choosing the optimal sets of 4, 5, or 6 colleges will have to make 154, 190, or 225 calculations under our 

algorithm, respectively. The recursive algorithm is orders of magnitude faster than the brute force 

algorithm in this case. 

 


