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Abstract: For students whose math skills lag expectations, public schools often increase the 

fraction of the school day spent on math instruction. Studying middle-school students and using 

regression discontinuity methods, I estimate the causal effect of requiring two math classes—one 

remedial, one regular—instead of just one class. Math achievement grows much faster under the 

requirement, 0.16-0.18 student standard deviations. Yet, one year after returning to a regular one-

class schedule, the initial gains decay by as much as half, and two years later just one-third of the 

initial treatment effect remains. This pattern of decaying effects over time mirrors other 

educational interventions—assignment to a more skilled teacher, reducing class size, retaining 

students—but spending more time on math carries different costs. One cost is notable, more time 

in math crowds out instruction in other subjects.  
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Many students’ math skills fall far short of expectations. In the most recent National 

Assessment of Educational Progress (NAEP), two-thirds of 8
th

 grade (14-15 year old) students 

were not “Proficient” in math; more concretely, they likely could not, for example, draw lines of 

symmetry in a geometry problem or solve a measurement problem involving unit conversions 

(National Center for Education Statistics 2011). In response, many public schools have begun 

increasing the quantity of time that struggling students spend in math class, with the hope that 

students will “catch up” to expectations. Existing, but limited, evidence finds students do make 

meaningful gains in achievement under this kind of remedial intervention. Yet the increase in 

quantity of math instruction is typically short-lived, suggesting an important but to-date largely 

unaddressed question: To what extent do students’ gains from remediation persist after the 

quantity of instruction they receive returns to typical levels? 

 Some amount of decay in remediation-induced gains would not be a surprise. Several 

other short-lived educational interventions—assignment to a more skilled teacher, reducing class 

size, retaining students—show initially positive effects that begin to fade soon after the infusion 

of extra resources ends. Students’ gains from extra class time may, nevertheless, fade more or 

less quickly than alternative approaches to boosting math skills. Teachers could, for example, use 

the extra time to broaden the curriculum, including concepts that better prepare students for 

future courses; or the extra time could be used for additional practice to reinforce the basic 

curriculum. Alternatively, an extra remedial class may simply be given over to test preparation 

boosting scores but not skills. Thus accurately judging the costs and returns to competing 

interventions, even if the produce similar initial gains, requires understanding the pattern of 

persistence over time. 
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In this paper I study a sample of middle-school students who were quasi-randomly 

assigned to either a math remediation class schedule—taking two math classes for one entire 

school year—or to a regular class schedule—taking one math class and one elective class in 

some other subject. I first estimate the immediate effect of taking an extra math class on student 

achievement at the end of the treatment year. I then estimate how much of that initial effect 

persists one and two years after students return to the regular one math class schedule. Finally, I 

examine treatment effects during high school years: math course taking and test scores, course 

taking in the subjects displaced by extra math time, and persistence to graduation. 

Each year, starting with 6th grade, students in the Miami-Dade County Public Schools 

are identified as candidates for the two math class schedule if their score on the prior-spring’s 

state math test falls below a pre-determined cut-score. Several factors determine students’ final 

class schedules, but the probability of taking two math classes changes discontinuously and 

substantially at the cut-score. Using fuzzy regression discontinuity (FRD) methods, I estimate the 

local average treatment effect (LATE) comparing outcomes for treated students just below the 

cut to non-treated students just above. Since students were reassigned each school year, I 

explicitly model outcomes over-time using a dynamic treatment effects approach. 

At the end of the school year during which they took two math classes, students who 

began the year with achievement near the 50th  percentile (the assignment cut) scored 0.176σ 

(student standard deviations) higher than their otherwise identical classmates who attended just 

one math class. At a second discontinuity in the probability of treatment, about the 24th 

percentile of prior achievement, treated students gained 0.166σ in math. However, one year later, 

after a full year back on the traditional schedule of just one math class, the gains had shrunk to 

one-half to two-thirds the original size. Two years later the difference was one-fifth to one-third 
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the original gain. Once students reach high school I find little evidence of differences, though the 

estimates are comparatively less precise. For example, treated students were no more likely to 

have completed Algebra I by the end of 9th grade or to have completed Algebra II by the end of 

high school.  

One key cost of a two math class approach is the opportunity cost of forgone instruction 

in some other subject (assuming the length of the school day is fixed). In Miami’s middle 

schools, students taking two math classes gave up an elective class in physical education, the arts 

or music, or foreign languages. While the exact courses displaced in Miami are endogenous, the 

general constraint binds for any school taking this approach to remediation. First, this crowd out 

will directly reduce achievement in the forgone subjects during the short run (treatment year), 

which may alter the trajectory of longer run achievement. Second, assuming math is more 

cognitively taxing than the displaced course, the crowd out may also reduce effort in other 

classes, or reduce homework effort by increasing the marginal value of students’ leisure time.  

I find no treatment effect on reading test scores at the end of the treatment year, nor do I 

find strong evidence of any treatment-induced differences in outcomes during students’ high 

school years. However, because fewer cohorts of students have aged through high school, those 

analysis samples are smaller and effect estimates much less precise. I cannot reject zero 

treatment effect for (nearly) all the high school outcomes examined, but I also cannot reject large 

benefits (losses) which would be important considerations in policymakers’ calculus.  

A handful of recent empirical papers, for example Chetty et al. (2011) and Chetty, 

Friedman, and Rockoff (2013b), document cases where initially large student test score gains 

decay substantially in the years immediately following treatment, but years later treatment 

effects re-emerge in longer-run, non-test-score outcomes. The decay of initial gains documented 
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in this paper closely mirrors the initial pattern of test score fadeout. However, if doubling math 

instruction in middle school has long-run effects, those re-emergent effects are not clearly 

detectable in students’ high school achievement and attainment.  

These estimates can be interpreted causally under three key assumptions. First, students’ 

individual test scores, the forcing variable, and the treatment assignment cut-score were 

determined independently of each other. This assumption is well supported by the institutional 

details of the testing process, and by empirical tests. Second, no unobserved determinant of 

outcome test scores changed discontinuously at the assignment cut-score; the exclusion 

restriction in the instrumental variables terms of FRD. Other observed determinants did change 

discontinuously at the cut-scores. Students scoring just above the cut were slightly more likely to 

be placed in an honors or advanced section for their regular math class, and had higher-

achieving, more-homogeneous classmates in their regular math class. I include these other 

“treatments” as additional endogenous variables, and use a vector of excluded instruments 

defined by interacting the standard FRD cut-score instrument with indicators for each individual 

school. This approach leverages between-school variation in how the cut-scores affect student 

assignment to math classes, both remedial and regular, for identification. The results from this 

multi-site method are similar to standard FRD estimates which ignore these other “treatments.” 

A third assumption is required when estimating the persistence of effects one and two 

years after treatment ends: namely that the immediate treatment effect of an extra math class 

does not depend on having been treated previously. I show that the results are similar under an 

alternative third assumption: that treatment in one year does not in practice affect the probability 

of treatment in future years. 
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Current school evaluation systems, which focus largely on student test scores in just a 

few subjects, have led many public schools to change the way they allocate scarce resources 

across subjects, like student time in each subject class (Dee and Jacob 2010). Unfortunately the 

literature on how quantity of instruction affects educational production is much less developed 

than the literatures for other inputs like teachers, peers, and class size. This paper contributes 

evidence to both that quantity literature generally, and the literature on remediation specifically. 

 

1. Evidence on Quantity of Instruction and Persistence 

1.1. Quantity of Instruction 

Quantity of instructional time is an intuitive input to educational production, and has been 

the object of scholarship at least since psychologist John Carroll’s work in the 1960’s. The first 

order relationship is straightforward: the marginal returns to instructional time should be positive 

but diminishing. Most existing empirical evidence comes from settings where students 

experienced an increase in the total quantity of instructional time: longer school days, weeks, or 

years; summer school; or grade retention. The strength of causal inference varies but estimates 

are generally positive or null.
1
  

This paper focuses on a much less studied type of variation in quantity of instructional 

time: holding total school hours fixed, but increasing instructional time in one subject by 

                                                 
1
 Checkoway et al. (2011) find, in general, no effects of a longer school day on achievement in reading, math, and 

science. Studying broader interventions which include longer school days, Hoxby, Murarka, and Kang (2009) find 

evidence of positive effects of longer days, but Angrist, Parthak, and Walters (2011) report no marginal effect. 

Studying variation in the number of school days, Sims (2008) finds positive effects on math achievement but not 

reading. Patall, Cooper, and Allen (2010) provide a review of older work on the length of school days and school 

years. Lavy (2010) finds positive effects using cross-country variation. 

  Jacob and Lefgren (2004) use regression discontinuity methods to estimate the effect of summer school and 

grade retention; they find positive effects on 3rd grade achievement, but not 6th grade. Schwerdt and West (2012) 

also find positive effects on students retained in 3rd grade using regression discontinuity. A broad review of the 

evidence finds positive effects for summer school (Cooper et al. 2000), but few of the studies reviewed have strong 

claims to causality. 
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reducing time in a different subject. The most comparable prior work comes from a policy in the 

Chicago Public Schools which doubled Algebra class time for low-achieving ninth graders. 

Using regression discontinuity methods, Raudenbush and Nomi (2013) find a gain of 0.31σ in 

test scores for treated students near the national median of math achievement (the point at which 

treatment was discontinuously assigned).
2
 In a similar RD setting, Dougherty (2012) finds large 

gains in reading among 6th grade students assigned to take an extra reading class. These 

marginal gains from adding a second class in math (reading) are large, but somewhat smaller 

than descriptive estimates of a typical year of growth in math scores based on a national sample 

of students—students who are presumably taking just one math class (Hill et al. 2008). 

Additionally, Cortes, Goodman, and Nomi (forthcoming) find positive treatment effects on the 

Chicago students’ high school graduation and college enrollment outcomes. 

Other research has used between-country variation (Lavy 2010) or between-teacher 

variation (Brown and Saks 1987, Raudenbush, Hong, and Rowan 2002) in subject-to-subject 

time allocation decisions. The results are generally positive or null.
3
 

 

1.2. Persistence of Achievement Gains 

 While proximate gains from increasing instruction may be an intuitive result, the extent 

to which those gains will persist over time is less clear ex-ante. Several studies over the past 

decade have documented the impersistence of student achievement gains generated by varying 

                                                 
2
 Original estimates from the Chicago policy were smaller, about 0.20σ (Nomi and Allensworth 2009, Raudenbush, 

Reardon, and Nomi 2012), but the more recent estimates account for differences in peer quality which was also 

discontinuously assigned at the same cut-score. 
3
 Reallocating time across subjects is also often one element of broader bundle of school reforms (Bryk, Lee, and 

Holland 1993, Kemple, Herlihy, and Smith 2005, Lavy and Schlosser 2005). These broad treatment bundles often 

produce positive effects, but the marginal role of time allocation is unclear. 

 A related question is how to organize instructional time conditional on both total amount and subject 

allocations. Zepeda and Mayers (2006) review research on “block scheduling”, a common alternative to traditional 

organization. 
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interventions. Indeed, across a number of quite different interventions, large initial gains decay 

about half or more in the first year after the intervention ends; similar to the estimates of fadeout 

I report in this paper. This result seems to hold for reducing class size (Krueger and Whitmore 

2001), assigning students to more effective teachers (Kane and Staiger 2008, Jacob, Lefgren and 

Sims 2010, Rothstein 2010, Chetty, Friedman and Rockoff 2013b, Cascio and Staiger 2012), and 

retaining students in early grades (Jacob and Lefgren 2004, Schwerdt and West 2012). When 

researchers can measure persistence over multiple years, however, they generally find some 

persistence of the original gain.  

 (Im)persistence of achievement gains may arise from a number of mechanisms (Jacob, 

Lefgren and Sims 2010, and Cascio and Staiger 2012). First, students forget what they once 

knew. Students with different initial achievement nevertheless have similar rates of decay over 

time in math knowledge and skills (Bahrick and Hall 1991). Second, empirical estimates of 

learning persistence will exclude any real and persistent learning that is not measured on 

subsequent years’ tests. A student may know lots of algebra one year after her algebra class but 

few algebra questions will appear on a geometry test. Third, schools’ (families’) may allocate 

educational resources endogenously over time in compensatory or complementary ways. A 

student assigned a low quality teacher one year may be ensured a high quality teacher the next. 

The similarity of estimated fadeout patterns across different interventions suggests the possibility 

that some or all of these causes will erode achievement gains no matter how they are obtained.
4
 

Yet having more time with students allows for instructional strategies which may 

counteract mechanisms one and two. Extra classroom time could be used for extra individual 

                                                 
4
 Test scaling and cheating also influence empirical estimates of test score fadeout. Notably, Cascio and Staiger 

(2012) demonstrate that the typical practice of standardizing student test scores by cohort and year accounts for 10-

20 percent of estimated fadeout. I return to this issue later. Jacob and Levitt (2003) document teacher cheating and 

show how it complicates estimation and interpretation of fadeout.  
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practice, as opposed to extra lecturing. Practice reduces the decay of knowledge and skills over 

time, and improves ability to apply existing knowledge to new concepts and problems (Glick and 

Holyoak 1983, Bahrick and Hall 1991, Ericsson, Krampe and Tesch-Romer 1993). Extra time 

might also be used to broaden the curriculum, including concepts that intentionally prepare 

students for future courses. Carrell and West (2010) show evidence that some teachers, perhaps 

consciously, improve their students’ longer-run achievement at the expense of the short run 

achievement. Alternatively, any extra time may simply be given over to test preparation boosting 

scores but not skills. In the current data I do not observe how the extra time was used nor can I 

differentiate mechanisms of fadeout, but contrasting estimates of net persistence rates across 

interventions is a first step. 

In general, empirical estimates of persistence for quantity of instruction induced gains are 

scarce. Jacob and Lefgren (2004) and Schwerdt and West (2012) both find initial positive effects 

on achievement of retention in 3rd grade, both find only about half of the initial effect persisting 

after one year treatment, and Schwerdt and West report additional decay in the years that follow.  

 To this literature I add estimates of both initial effect and effect persistence over time. I 

study a new setting, additional math instruction in middle school that crowds out other subjects, 

and apply estimation methods that explicitly model the dynamic nature of treatment effects. 

 

2. Treatment and Setting  

Each spring Florida students in grades 3-10 are tested in mathematics; scores are divided 

into five discrete ordered categories known as “achievement levels”. By state statute, middle-

school students (grades 6-8) whose scores the prior spring place them in level 1 or 2 are 
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identified as candidates for the remedial two math class schedule.
5,6

 Several factors determine 

students’ final class schedules; for example, a student’s need for two reading classes may be 

greater than her need for two math classes, or her parents may intervene. Nevertheless, the 

probability of actually taking a two math class schedule does change discontinuously and 

substantially at the cut-scores separating achievement levels. 

As shown in figure 1, in the Miami-Dade County Public Schools, students’ assignment to 

a second, remedial math class was indeed strongly determined by their test score achievement 

level. Figure 1 plots the proportion of 6th grade students taking a second math class on the y-axis 

against math test scores the prior spring (their 5th grade year) on the x-axis. Consider the 

students who scored near the dashed line separating level 2 and level 3—about the 50th 

percentile of 5th graders in Miami. Only 2-3 percent of students who reached level 3 took two 

match classes. By contrast, their peers who barely missed level 3, but scored at the top of level 2, 

were about 13 percentage points more likely to take a second class. Notice that the probability of 

treatment jumps again, by about 19 points, at the cut between level 1 and level 2—about the 24th 

percentile in Miami. Figures for 7th and 8th grade assignment, available in the online appendix, 

show a similar pattern. Point estimates for the magnitude of the discontinuities at each cut-score 

in figure 1 are provided in row 1 of table 1.
7
 

                                                 
5
 § 1003.3156(1)(c) Florida Statute. This statute corresponds to the Florida Comprehensive Assessment Test 

(FCAT) which was the test during the period under study. The state is transitioning to the FCAT 2.0, but the 

requirement continues. 
6
 In 2009 the score defining level 2 versus level 3 on the 8th grade math FCAT was roughly just above “Basic” on 

the NAEP; a result similar for 4th grade FCAT, and for both grades in 2005 (Banderia del Mello 2011). FCAT level 

3 is “Proficient” in the No Child Left Behind sense. 
7
 The estimates in table 1 are sharp regression discontinuity estimates. Column 1 of table 1 are the first stage 

estimates in the standard fuzzy regression discontinuity design. Each estimate is  ̂ from the specification 

         {        }           (        {        })      , 

where      is an indicator = 1 if the student took a class of the given type during 6th grade,        is the forcing 

variable (5th grade math score), and   is the cut-score dividing achievement levels. I fit this specification with local-

linear least squares using a rectangular kernel and bandwidth of 23 scale score points above/below the cut-score. 
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These discontinuities in the probability of taking a second math class are the core source 

of identifying variation. Figure 1 shows the average pattern of treatment assignment across all 

Miami-Dade middle schools. As I describe in more detail later in the paper, the magnitude of the 

treatment assignment discontinuities varies from school to school. This between school variation 

is also an important source of identification. 

Students in the remedial schedule take two distinct math classes: a regular standard math 

class, which they would take in any case; and the second math class, usually called “Intensive 

Mathematics.” An Intensive Math class enrolls, on average, 17.8 students (standard deviation 

6.1) compared to a mean of 21.5 (6.3) in other regular math classes. In nearly all cases, a 

student’s Intensive Math class is distinct from her regular math class. During the study period, 

about nine out of ten students in Intensive Math classes had a different teacher, or different peers, 

or both in their regular math class. Approximately half of Intensive Math classes were composed 

of only achievement level 1 students or only level 2 students, the other half mixed level 1 and 

level 2 students together. 

The state’s course description for Intensive Math early in the study period guided 

teachers to cover “mathematics content…identified by screening and individual diagnosis of 

each student's need for remedial instruction, critical thinking, problem solving, and test-taking 

skills and strategies.” A later description is less specific, simply stating that the course is 

“designed to assist students with content mastery.”
8
 To the extent treated students’ second math 

class met these individualized instruction objectives, the estimates I present later may be an 

upper bound for a more general policy of doubling the quantity of math instruction time.  

                                                                                                                                                             
Section 3 provides a more detailed description of the regression discontinuity methods used in this paper, including 

the selection of bandwith. 
8
 Copies of the full course descriptions are available in the online appendix.  
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Devoting more of a student’s school day to math instruction must crowd out other 

subjects, assuming total school hours remain fixed. Thus, the treatment condition is defined by 

both taking a second math class, and not taking a class in some other subject. In Miami, a second 

math class is most likely to displace a class in physical education, arts and music, or foreign 

language; though the specific class displaced is endogenous.  

Figure 2, constructed just as figure 1 was, plots the proportion of students taking a class 

in English language arts (top line, triangles), physical education (diamonds), arts and music 

(circles), or foreign language (bottom line, squares). Plots for science and social studies classes, 

not shown, are quite similar to the plot for English language arts. Point estimates for the 

discontinuities in figure 2 are provided in table 1. For example, 60 percent of students who 

scored at level 3 took a P.E. class, but students who just missed the level 3 cut-score were 4 

percentage points less likely to take a P.E. class. Discontinuities are also apparent in arts and 

foreign languages at the lower achievement level cut-scores.  

These reductions in elective courses appear directly attributable to treatment assignment. 

Together the reductions in P.E., art, and foreign language course taking account for 75-80 

percent of the displacement required by the increases in math classes. By contrast, there are no 

discontinuities in core subjects, English, science, and social studies; nor are there discontinuities 

in elective course taking at the higher achievement level cut-scores. Additionally, in results 

available in the online appendix, there are no discontinuities in 7th or 8th grade course taking at 

the 5th grade test cut-scores.
9,10

 

                                                 
9
 A difference in art and music course taking in 8th grade is statistically significant at the 10 percent level for 

students at the level 2/3 cut-score on the 5th grade test, but this is one significant result out of 24 tests (six subjects, 

two cut-scores, two grades). 
10

 Attributing the discontinuities in P.E., arts, and foreign language course taking entirely to displacement by a 

second math class requires the assumption that the math achievement level cut-scores are not used in some other 

relevant class assignment mechanism. For example, the math score categories may be used in assigning students’ 

science classes, which may in turn restrict which other courses would fit into a student’s schedule. Nevertheless, two 
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This forgone instruction in P.E., arts, or foreign languages is a (potentially) important 

cost of the treatment in Miami, in addition to the direct costs of, for example, employing 

additional math teachers. In section 5 I examine the effects of treatment on outcomes in these 

displaced subjects. These crowd-out costs are, however, the endogenous choices of Miami’s 

students and schools. In other jurisdictions, additional math time could displace different 

subjects, or lengthen the school day. Schools in Miami chose to reduce P.E., arts, and foreign 

language. 

 The data for this paper, provided by the Miami-Dade County Public Schools, are 

composed of administrative records on each student’s annual state test scores, class and teacher 

assignments in each grade, and demographic information for the school years 2003-04 through 

2012-13.  

 Miami-Dade is the fourth largest school district in the United States including, in any one 

year, about 80 thousand students in grades 6 through 8 at approximately 145 different middle 

schools. Table 2 column 1 provides some description of the district’s middle school students 

during the study years. Nearly two-thirds are Hispanic and one-quarter African-American. Two-

thirds live in households whose low income level qualifies them for free or reduced price lunch. 

A little over half have limited proficiency in English.  

Column 2 of table 2 reports the same characteristics for my primary estimation sample: 

students who were (i) enrolled in a Miami-Dade school for all three middle school years, and (ii) 

have a math test score each of those three years. Comparing columns 1 and 2, this sample started 

6th grade a few percentile points higher in the math distribution compared to their peers who 

                                                                                                                                                             
pieces of evidence support this assumption. First, the level 3/level 4 and level 4/level 5 cut-scores—which are not 

relevant to treatment assignment—show no discontinuities in elective course taking. Second, course enrollment 

forms provided to students explain that if they are assigned to a second math class, then they will not get to choose 

an elective course. Example forms are provided in the online appendix. 
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would eventually attrit, though both groups had similar growth in 5th grade. Non-attriting 

students may also have been less absent from school in 5th grade. The remaining columns of 

table 2 are discussed in the next section. 

Focusing on these non-attriting students keeps the sample constant as I estimate effects 

over time, though, as I show later, results are robust to using more inclusive samples. 

Additionally, in results available in the online appendix table A1, I find no evidence of 

differential attrition rates using traditional tests. Students who score just below the level 1/level 2 

cut-score or just below the level 2/level 3 cut-score are no more or less likely to leave the Miami-

Dade schools, have a missing test score, or be retained in grade than those scoring just above the 

cut-scores.  

 

3. Immediate Effects on Math Achievement 

3.1. Estimation Methods 

 The first empirical objective is to estimate the effect of taking a second remedial math 

class, in addition to one’s regular math class, on student achievement at the end of the treatment 

school year. As figure 1 shows, the probability of treatment changes discontinuously at the level 

cut-scores. Thus, for students scoring sufficiently close to the cut-score, the remediation 

treatment is effectively randomly assigned by test measurement error, but compliance with 

treatment is imperfect. Under certain assumptions, fuzzy regression discontinuity (FRD) methods 

recover the local average treatment effect (LATE) in such settings; where “local” is limited to 

compliant students scoring at (or at best very near) the test cut-score. 

The estimand of interest,   , is defined in terms of limits: 
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where      is the math state test score for student   in year  ,      is the treatment indicator    if 

the student had a second, remedial math class, and   is the proficiency level cut-score.  

 I estimate    using the local linear instrumental variables regression method suggested by 

Hahn, Todd, and Van der Klaauw (2001) and Imbens and Lemieux (2008). Specifically, I fit the 

regression equations: 

               (      )   (      )   {        }       

(1) 

by two-stage least squares instrumenting for the treatment indicator      with an indicator for 

scoring below the cut-score  {        }. I estimate equation 1 and using only observations 

where |      |  (   
 ), where    is the optimal smoothing parameter, the bandwidth, 

determined using the cross-validation procedure described in detail by Ludwig and Miller (2007) 

and Imbens and Lemieux (2008).
11

 While    is optimal given a mean squared prediction error 

criterion, I show that the main results are robust to bandwidth choice. 

Both   and   are functions only of the forcing variable       , the math test score whose 

achievement level determines treatment. Given the strong empirical linear relationship between 

                                                 
11

 Throughout the paper I report estimates with       which is the optimal bandwidth for the key first stage 

equation (i.e., predicting compliance with treatment in 6th grade). 

In brief, the cross-validation procedure chooses the bandwidth that minimizes the mean squared prediction 

error  

         
 

 

 
∑(      ̂(        ))

 
 

   

 

where  ̂(        ) is the out-of-sample predicted value for some outcome      using parameter estimates from a 

simple bivariate regression of      on the forcing variable        and a constant using only observations     where 

(        )                when         , and where               (        ) when         . In this 

case, I choose    using the first-stage equation,          , which is (nearly) always less than the optimal bandwidth 

suggested by the ITT equation,          . 
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student test scores over time, the results presented in this paper use linear functions for   and  , 

allowing the two slopes to differ. The results are robust to using higher order polynomials. In all 

estimates I adjust the standard errors to account for the coarse nature of the forcing variable, 

      , by clustering observations at each scale score point (Lee and Card 2008). 

Causal identification of    requires two important assumptions. First, that treatment 

assignment is independent of potential outcomes,     , conditional on the forcing test score, 

      . More generally, the cut-score, c, and the forcing test scores,       , are determined 

independently of each other. This seems a reasonable assumption. Cut-scores and proficiency 

levels are determined in “scale score” units, not the raw number of correct items; scale scores are 

a function of IRT (item response theory) estimated parameters unknown to students taking the 

exams. Additionally, the data do not show any evidence against independence. Figure 3, a 

histogram for 6th grade students of the forcing test score,       , shows a smooth distribution 

near the cut-scores. Using the formal test suggested by McCrary (2008) I fail to reject the null 

hypothesis of continuity at all four cut-scores; the discontinuity estimates and standard errors are 

-0.031 (0.023) at the level 2 cut-score, 0.010 (0.015) at level 3, -0.017 (0.015) at level 4, and -

0.015 (0.030) at level 5. 

Second, except the probability of treatment, nothing that affects the outcome,     , 

changes discontinuously at the cut-score. This assumption amounts to the exclusion restriction in 

fuzzy regression discontinuity setting. There is no evidence this assumption is violated for any 

pre-treatment observables. Figure 4, following the structure of figure 1, plots math test score 

gains in year (   ), the proportion eligible for free or reduced price lunch, and school absences 

in the year (   ) against the forcing test score,       . Columns 5 and 6 of table 2 report point 
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estimates of the potential discontinuity at the cut-scores for several pre-treatment variables; none 

of the estimates is statistically significant.
12

 

There is, however, evidence that other educational inputs in treatment year   were 

discontinuous at the achievement level cut-scores. As shown in figure 5, the characteristics of 

students’ regular required math class were somewhat different for students scoring just above 

and just below the cut-scores. Students scoring just above an achievement level cut-score were 

more likely to be in an honors or advanced section for their regular math class, and their regular 

class peers’ prior math achievement was higher (mean) and more homogeneous (standard 

deviation). By contrast, I find no evidence of a discontinuity in the characteristics of students’ 

regular math teacher, including teacher test-score value-added, years of experience, or having a 

master’s degree.
13

 Point estimates for the discontinuities in figure 5, and for (the lack of) 

discontinuities in teacher characteristics are provided in table 3.
14

 

To the extent these other discontinuously-assigned “treatments” affected math 

achievement my estimates will be biased, but the direction of bias is unclear. Existing theory and 

empirical evidence suggests that students learn more when placed with higher achieving, more 

homogenous peers (Lazear 2001, Hoxby 2002, Duflo, Dupas, and Kremer 2011) which would 

bias against finding a treatment effect. By contrast, achievement can suffer when students are 

assigned to courses beyond what they are prepared for (Clotfelter, Ladd, and Vigdor 2011) 

suggesting a potential positive bias. 

                                                 
12

 Table 2 columns 5 and 6 are estimated with standard sharp regression discontinuity methods. See footnote 7 for 

the exact specification. 
13

 Teacher test-score value-added measures were estimated following the method described in Kane and Staiger 

(2008), but are not corrected for measurement error (i.e., “shrunken”) since they are an outcome variable in the 

present analysis. Additionally, for student   assigned to teacher   in year  , is the measure is teacher  ’s value-added 

estimated using data from all years 2004-05 through 2012-13 but excluding year    
14

 Table 3 is estimated with standard sharp regression discontinuity methods. See footnote 7 for the exact 

specification. 
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To address the potential bias I add these three regular math class characteristics as 

additional endogenous treatment variables to the specification described by equation 1, which 

becomes: 

                     (      )   (      )   {        }          

(2) 

where the vector      includes an indicator for assignment to an honors or advanced section for 

regular math class, plus both the mean and standard deviation of baseline math achievement, 

    , among classmates in student  ’s regular math class. As excluded instruments I use a vector 

composed of interactions between an indicator for each school and the below-cut-score indicator, 

 {        }. I estimate equation 2 using limited information maximum likelihood; LIML is 

preferable to two-stage least squares in a setting, like this, with many instruments derived from 

the multi-site structure of treatment assignment (Chamberlain and Imbens 2004). This multi-site 

multi-treatment IV method has been used in other settings by Kling, Liebman, and Katz (2007) 

and Duncan, Morris, and Rodrigues (2011). Results from the more-typical one-instrument one-

treatment FRD approach are quite similar, and are presented alongside this preferred approach in 

table 5. 

 This approach uses between-school variation in how the cut-scores affect student 

assignment to math classes, both remedial and regular, for identification. When examined 

school-by-school the size of the discontinuities in      and      do vary, and between-school 

variation has been demonstrated in other class assignment decisions (Clotfelter, Ladd, and 

Vigdor 2005, 2006, Loeb, Kalogrides, and Beteille forthcoming). Table 4 describes the between-

school variation in how the two cut-scores are used in treatment assignment. For each of the 145 

schools, I estimated the school-specific discontinuity in each treatment—two math classes, 
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advanced or honors section, class baseline score mean, class baseline score standard deviation—

at each 5th grade test cut-score. Estimation was identical to the methods used in tables 1 and 3, 

except that the sample was restricted to only student observations from the given school.  

 Table 4 columns 1 and 2 show the meaningful between-school variation in how the two 

math class treatment are assigned. In the top decile of schools the take-up rates are three times as 

large as the district average, and in many schools there is effectively no discontinuity. The latter 

result is partly because in one out of four schools no level 2 students are assigned to an extra 

math class. Additionally, schools with large assignment discontinuities at the level 1/2 cut tend to 

have smaller discontinuities at the level 2/3 cut; the two estimates are correlated -0.39. There is 

also meaningful between-school variation in how students’ regular math class characteristics are 

assigned at the cut-scores, but the discontinuities in these other treatments are only weakly 

correlated with the discontinuities in the second math class treatment assignment. 

 While the multi-site FRD estimator requires, and indeed benefits from, differential 

treatment take-up between schools, I assume that treatment effects are constant. If treatment 

effects also vary between sites, multi-site instrumental variables estimates will be biased if the 

site-by-site treatment compliance rates covary with the site-by-site treatment effects (Reardon 

and Raudenbush 2013). Reardon and coauthors describe this “compliance-effect covariance 

bias” and related issues, and develop estimators for such settings (Raudenbush, Reardon, and 

Nomi 2012, Reardon and Raudenbush 2013, Reardon et al. 2014).  

Additionally, as Reardon and Raudenbush (2013) show, the multi-site, multi-treatment 

method requires an additional assumption beyond the standard IV assumptions to identify   : 

namely that assignments      cannot be affected by      conditional on the excluded instrument, 

 {        }. While figure 5 and table 3 show evidence the instrument affected     , this 
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assumption would be violated only if assignment to take a second math class had an additional 

effect on     . This assumption seems plausible. First, students’ remedial and regular math classes 

were separate assignments, as described in section 2. Students with one math class and students 

two math classes were mixed together in regular math classes, and students from different 

remedial classes were mixed in regular math classes. This mixing suggests a student’s regular 

math class was not directly determined by her assignment to a remedial math class. Second, there 

are similarly sized discontinuities in      at the level 3/level 4 cut-score where      is not relevant. 

 

3.2. Effects at the End of the Treatment Year 

 The top panel of figure 6 plots the average test score change from 5th to 6th grade, 

measured in student standard deviation units, by the scale score values of the forcing variable, 

students’ 5th grade math score       .
15

 At the end of the treatment year, 6th grade, there is a 

visible discontinuity in student test score gains at both the level 1/level 2 and level 2/level 3 cut-

scores, consistent with a positive effect of additional math class time. Students scoring just below 

the level 1/level 2 cut gained, on average, about 0.10σ compared to 0.05σ for students just above 

the cut. The apparent gap at the level 2/level 3 cut is similar.  

However, the differences depicted in figure 6 understate the effect of taking a second, 

remedial math class since only the probability of treatment was discontinuous at the cut-scores 

(figure 1). Table 5 reports estimates of the effect for students who were actually treated—

specifically, the effect for students who took a second class because they scored just below the 

cut (the LATE). Students who began 6th grade near the 50th percentile of math achievement (the 

                                                 
15

 With the notable exception of forcing variable,       , all test scores in this paper have been standardized (mean 0, 

sd 1) using the grade-by-test-year distribution. Test score gains in figure 6 are relative to the pre-treatment test score, 

i.e., (           ) for the top panel, (             ) for the middle panel, and (             ) for the bottom 

panel. 
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level 3 cut) and who took a second math class during the year scored 0.176σ higher at the end of 

the year (panel A, row 1, col 5). The gain among treated students who began 6th grade near the 

24th percentile was quite similar: 0.166σ (panel A, row 1, col 1).
16

 In short, these estimates 

suggest that taking two math classes, one remedial and one traditional, raises median students’ 

math achievement by one-sixth or more of a standard deviation beyond the gain from taking just 

one, traditional class. 

These treatment year gains are substantively important. The 0.16-0.18σ effect is similar 

in magnitude to the oft-estimated standard deviation in teacher effectiveness (Hanushek and 

Rivkin 2010), and the effect of smaller class-size in early grades (Krueger 1999). Recent work 

suggests differences in test scores during elementary and middle grades can predict long-run 

labor market outcomes (Chetty, Friedman, and Rockoff 2013b). Yet, while the variation in class 

time was binary (one class to two), the results are consistent with diminishing marginal returns to 

class time. A 0.16-0.18σ gain is only one-third to two-thirds the size of what Hill et al. (2008) 

estimate as the typical growth in math test scores during middle-school; Hill et al. use data from 

national norming samples of students, most of whom presumably took just one math class.  

  Notably, the estimates in table 5 measure achievement gains in math skills that are tested 

at the end of 6th grade. The two-math-class treatment has a remedial education motivation, and 

thus may have had larger effects on the kinds of math skills students should have learned in 

earlier grades. If students were re-tested on 5th grade level material, or earlier material, the 

estimated treatment effects on those math skills might even be larger. 

To this point and throughout the rest of the paper I focus discussion of results on effects 

for students treated in 6th grade who I can subsequently observe in both 7th and 8th grade, as in 

                                                 
16

 As suggested by figure 1, the excluded instrument(s) are strong predictors of treatment. The F-statistics reported 

in table 5 are all well above the standard threshold. 
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figure 6. This choice improves the estimation and interpretation of effects over time, the subject 

of the next section. However, estimates of the immediate effects are similar for students treated 

in 7th or 8th grade as shown in panels B and C of table 5. The estimates are also robust to 

attrition from the original 6th grade cohorts. As a comparison to row 1, in row 2 I add to the 

estimation sample students who attrit after 7th grade. In row 3 I add students who attrit after 6th 

grade. Neither changes the estimated effect substantially.  

 Three other tests of robustness are important to note. First, my preferred estimates were 

obtained using the multi-site FRD approach described above for fitting equation 2. This approach 

controls for the observable characteristics of students’ regular math class that changed 

discontinuously at the assignment cut-scores (figure 5). Failure to account for these other 

educationally productive inputs risks biasing the estimates of the effect of a second math class; 

though, as discussed above, the direction of bias is ambiguous. For comparison columns 2 and 6 

of table 5 report estimates obtained by traditional FRD methods ignoring the other “treatments”. 

These estimates suggest a potential positive bias from omitting the regular math class 

characteristics. I cannot, however, reject the null of equality across the two methods, partly 

because the traditional FRD estimates are less precise. 

 Second, as an alternative test for bias from omitting the regular math class characteristic 

“treatments”, I conduct a placebo test based on the achievement level 3/level 4 cut-score. 

Students near the level 4 cut-score were not subject to the second math class requirement, as 

shown in figure 1, but the regular math class characteristics were somewhat discontinuous at the 

level 4 cut as shown in table 3. Any differences in math achievement outcomes at level 4 provide 

one measure of the potential effect of these other “treatments.” The results, not presented here, 
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suggest a small positive or zero effect on year   math score for students scoring just below the 

level 3/4 cut-score suggesting potential negative bias in the estimates of interest for this paper. 

Third, my preferred estimates were obtained using the cross-validation optimal 

bandwidth which minimizes mean-squared prediction error, but the results are fairly robust to a 

wide range of bandwidth choices as shown in figure 7. Robustness to bandwidth choice is a 

critical test for the local linear regression methods used in this paper (Imbens and Lemieux 

2008). Figure 7 plots a series of point estimates one for each integer bandwidth. The solid line 

traces the point estimates, and the dotted lines trace the cluster-adjusted 95 percent confidence 

intervals. As figure 7 shows, the estimates of immediate effects are generally not sensitive to 

bandwidth choice. For the level 2/level 3 cut-score, the estimates do get somewhat smaller at 

smaller bandwidths but they are also less precisely estimated.
17

 

 These LATE estimates are only appropriate for causal inference about a distinct 

population: middle-school students (i) with math achievement levels similar to the 24th or 50th 

percentile of the Miami-Dade distribution (i.e., near the cut-score); and (ii) who, under a Florida-

like policy, would take a second math class (or not) based solely on their prior test score (i.e., 

compliers). While we cannot observe this population directly, table 2 provides some descriptive 

insight into the compliers. Columns 3 and 4 report the ratio of estimated compliance, from the 

single-instrument FRD first-stage, among students who share the given characteristic (e.g., 

                                                 
17

 One additional test of bias is based on the between-school variation in how these other regular math class 

“treatments” were assigned. I estimate the treatment effect of interest using conventional single-instrument FRD 

methods but with a restricted subsample of schools—schools where characteristics of students’ regular math class do 

not change discontinuously at the cut-scores. The estimates for this subsample are somewhat larger, suggesting a 

negative bias, but I cannot reject that they are equivalent to the main results. To identify the subsample I estimate 

three parameters for each school, the data underlying table 4. Then I select into the subsample any school where I 

cannot reject the null hypothesis of no discontinuity in each of the three characteristics. A stronger alternative, and 

perhaps preferable, definition of the subsample would include only schools where the three confidence intervals all 

include zero but also exclude the estimated district average. The subsample of such schools is too small to support 

reasonable estimation. 
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among female students only) over estimated compliance among all students. This ratio can be 

interpreted as the relative likelihood a complier has the given characteristic (Angrist and Pischke 

2009, pp. 171-172). The compliers to whom we can make inference are, this evidence suggests, 

more likely to be female and limited in English proficiency. For students near the 50th 

percentile, compliers are also more likely to be African-American. Among students near the 24th 

percentile, compliers are more likely to be Hispanic and frequently absent the prior year.  

  

4. Persistence of Math Gains Over Time 

While adding a second math class appears to have substantial immediate effects on 

achievement, those improvements relative to one’s peers may not, for reasons detailed earlier, 

persist over time. In this section my objective is to estimate the persistence of gains induced by a 

second, remedial math class one and two years after the extra class has ended.  

Returning to figure 6, the middle panel plots the average test score gain from 5th to 7th 

grade, measured in student standard deviation units, by the scale score values of the forcing 

variable, students’ 5th grade math score       . This visual evidence suggests achievement gains 

seen at the end of 6th grade may have substantially faded by the end of 7th grade. The bottom 

panel of figure 6, showing test score gains from 5th to 8th grade, suggests even further fadeout 

by the end of 8th grade. 

In table 6 panel A I report LATE estimates for treatment in 6th grade on test score 

outcomes at the end of 7th and 8th grade. Column 1 repeats the 6th grade test score effect from 

table 5 column 1 row 1 for convenience. The 7th and 8th grade LATE are estimated using 

equation 2 and the multi-site multi-treatment FRD methods described earlier; the only difference 

between columns 1-3 in panel A is the choice of outcome variable.  
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Students who began 6th grade near the 50th percentile of math achievement (the level 

2/level 3 cut-score) and who took a second math class during 6th grade scored 0.099σ higher at 

the end of 7th grade. The ratio of the 7th grade estimate and 6th grade estimate implies 56 

percent of the initial gain persisted after one year. Put differently, 43 percent of the initial gain 

faded out. The persistence rate is somewhat higher, 84 percent, for treated students who began 

6th grade near the 24th percentile (level 1/level 2 cut-score). By the end of 8th grade only 30-40 

percent of initial gains persist on average.  

However, the estimates in table 6 panel A (and the middle and bottom panels of figure 6) 

may either under- or over-state the true marginal effect of treatment in 6th grade. The ambiguity 

arises because students’ treatment status—taking two math classes versus taking just one math 

class—is reassigned in 7th grade and reassigned again in 8th grade; and, since treatment 

assignment is based on prior math achievement scores, assignment to remediation in 7th (8th) 

grade is partly a function of remediation treatment in 6th grade. The estimates in table 6 panel A 

take no account of this dynamic treatment assignment, and thus represent the total effect or 

reduced form effect of treatment in 6th grade on achievement in 7th (8th) grade. If, for example, 

taking two math classes in 6th grade reduces the probability of taking two math classes in 7th 

(8th) grade, these reduced form estimates will understate the marginal effect of treatment in 6th 

grade on 7th (8th) grade achievement.  

 

4.1. Estimation with Dynamic Treatment Assignment 

To recover the marginal effect of treatment I apply an estimator which explicitly 

accounts for the dynamic nature of treatment assignment. The parameter of interest is the 

marginal effect of taking two math classes in year   on student achievement in a subsequent year 
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 ; specifically, the effect of treatment in year   but no treatment in any subsequent year (  

 )  . 

    
  

     
     

     {         } 

The implied persistence of remediation-induced gains from   to   is given by the ratio     
   ⁄ .  

Because of the dynamic nature of treatment—assignment to remediation in any one year 

is partly a function of assignment to remediation in prior years—    
  cannot be directly estimated 

by the typical FRD method. To see why consider equation 3 which decomposes the total effect 

of remediation in year   on achievement in year  . For simplicity, equation 3 specializes to the 

case where   (   )  

      
  

       
     

 
       
     

 [
       
     

 
       
       

]        
  [               

 ] 

(3) 

As the decomposition makes clear, remediation treatment in year   can affect achievement in 

year (   ) directly,       
 , or by impacting future treatment assignment,       , or both. A 

naïve FRD approach regressing        on      in the manner of equation 2 would yield  ̂     
  not 

 ̂     
 . Note that   , which was the focus of section 3, is simply     

  in this notation.  

 Equation 3 suggests a form of dynamic treatment effects estimator for       
 , first 

proposed by Cellini, Ferreira, and Rothstein (2010) for the regression discontinuity setting.
18

 By 

rearranging equation 3 we have: 

      
        

                
  

(4) 

                                                 
18

 This is the “recursive” estimator in Cellini, Ferreira, and Rothstein (2010). The authors also propose an alternative 

“one-step” estimator to address imprecision arising because they are interested in effects at   much more distant than 
(   ) or (   ). 
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The three right hand side terms can be estimated individually by the FRD methods described for 

equation 2, with       
  then estimated in the style of indirect least squares. The estimates 

presented in table 6 panel B and discussed below follow this “indirect FRD” approach where 

year   is students’ 6th grade year and year (   ) is 7th grade. Standard errors obtained by the 

delta method.
19

  

 Causal identification of       
  requires three assumptions: the two standard FRD 

assumptions discussed in section 3, and a further third assumption that         
  does not depend 

on prior treatment status,     .
20

 Evidence for and against assumptions one and two is detailed in 

section 3. While that discussion focuses on the 6th grade assignment discontinuity, the evidence 

for the 7th and 8th grade discontinuities is similar and presented in the appendix. Moreover, to 

address the potential violations of assumption 2 seen in students’ regular math class 

characteristics, I use the multi-site FRD approach to estimate each of the terms in 4. 

 The new third assumption would be violated if a second, remedial math class in 7th grade 

was less (more) effective for students who also had a second class in 6th grade. In other words, if 

there are diminishing (increasing) returns to each year with a second class. Note, however, that I 

do not constrain effects to be equal across grade levels; that is,    is not necessarily      . As 

one test of this assumption I first estimate         
  using only the subsample of students where 

      , second similarly estimate for       , and finally test the null that the two estimates 

                                                 
19

 To obtain the complete variance/covariance matrix I simultaneously estimate the system of four equations, one 

each for the three right hand side terms in 4 and one for     
 . Each of the four equations is of the form equation 2. I 

stack observations, interact all right hand side terms with an indicator for the equation, include equation fixed 

effects, and estimate by the local-linear LIML methods described in section 3. This provides point estimates 

identical to LIML equation by equation, but with the added cross-equation covariances of coefficient estimates. This 

parallels the approach used by Cellini, Ferreira, and Rothstein (2010).  
20

 The third assumption is not required for estimating     
  in section 3 with the estimation sample is restricted to 6th 

grade students. No students are exposed to the remediation treatment in question before 6th grade. 
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are equivalent.
21

 I cannot reject this null hypothesis. For students near the level 1/level 2 cut-

score the test p-value is 0.250; near the level 2/level 3 cut-score the p-value is 0.525. However, 

this is an imperfect test since each of the subsample estimates is its own particular LATE.  

To this point I have focused on describing estimation of       
 : the marginal effect of 

remediation in 6th grade on student achievement measured at the end of 7th grade. Extending the 

same logic, I also estimate       
 : the marginal effect of remediation in 6th grade on achievement 

at the end of 8th grade.
22

 Equation 4 becomes:   

      
        

                
                

  

(5) 

I use the same methods and maintained assumptions to estimate         
  as for       

 . Here the 

more plausible third identifying assumption requires that neither         
  nor         

  depend on 

    . Extending the partial test described earlier, I cannot reject the joint null of both equivalence 

of treatment effects in 7th grade and equivalence in 8th grade.
23

  The p-values are 0.501 for the 

level 1/level 2 cut-score, and 0.326 for the level 2/level 3 cut-score. 

 

4.2. Persistence During Middle School 

Table 6 panel B reports estimates of the marginal effects, and implied measures of 

persistence, estimated using the indirect FRD methods described above for equations 4 and 5 to 

account for the dynamic nature of treatment assignment over time. Recall that students who 

                                                 
21

 I obtain these two estimates and their covariance by fitting equation 2 with       as the outcome,        as the 

treatment, and  {        } as the instrument; and with all right hand side variables interacted with the indicator 

    . 
22

 I use the same “stacked” equation method described for       
 . In this case there are eight equations. Each of     

 , 

      
 ,       ,        and         

  require one equation;         
          

                  
  requires three 

equations just as       
 . 

23
 Specifically I test the joint null hypothesis: 

   (         
 |      )  (         

 |      )   (         
 |      )  (         

 |      ).  
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began 6th near the 50th percentile of math achievement and who took a second math class during 

6th grade had an immediate gain of 0.176σ. By the end of 7th grade that initial gain had shrunk 

by a little more than half to 0.077σ. By the end of 8th grade the difference was just 0.031σ, 

suggesting three-fifths of the initial achievement gains had been lost. 

For students who began 6th grade near the 24th percentile the initial effects of treatment, 

which were quite similar to those at the 50th percentile, decayed somewhat less after one and 

two years. However, these estimates are less precise. I cannot reject complete persistence one 

year after treatment, and, conversely, I cannot reject complete fadeout two years after treatment. 

In short, the initial gains from a second, remedial math class, while substantial, do not fully 

persist if students return to a regular schedule with just one math class.  

This pattern of fadeout over time is quite similar to the pattern reported in the literature 

for other interventions to improve achievement scores, like reducing class size or improving the 

effectiveness of teachers, described in section 1. For example, several studies now show that 

half, or less, of teacher-induced gains persist after one year (Kane and Staiger 2008, Jacob, 

Lefgren, and Sims 2010, Rothstein 2010). Chetty, Friedman, and Rockoff (2011) and Cascio and 

Staiger (2012) find similar one-year decay, but also track persistence for a number of years; they 

estimate that one-quarter to one-third of teacher-induced gains persist in the long run. This is 

similar to the pattern reported in table 6. The extent and regularity of impersitence patterns for 

this intervention—two math classes—and other interventions reinforce the importance of 

considering fadeout in school policy and management decisions. 

In the end the marginal effect estimates (table 6 panel B) are fairly similar to the total 

effect or reduced form estimates (panel A), especially for students near the level 1/level 2 cut-

score. Why the similarity? One possibility is that treatment assignment in year (   ) does not 
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in practice depend (substantially) on treatment assignment in year  . If           in equation 4 

then the total effect is equal to the marginal effect,       
        

 .
24

 On its face          seems 

implausible. Section 3 and figure 6 provide evidence that remediation created a discontinuity in 

students’ test scores at the end of 6th grade,     . Since      partly determines       , we would 

intuitively expect a discontinuity in       . Yet the magnitude of        is less easy to predict 

since it depends on several factors, including treatment assignment compliance.  

Importantly, the magnitude of        depends not simply on math scale scores,     , rather 

it depends on the “achievement level” category into which      falls. Even if treatment in 6th 

grade improves student test scores from 5th to 6th grade, treatment may nevertheless have little 

or no effect on students’ 6th grade “achievement level” if the 6th grade cut-scores are much 

higher (lower) in the distribution than the 5th grade cut-scores. For example, consider students 

whose 5th grade test score placed them just below the 24th percentile of math achievement; their 

5th grade achievement level was level 1. By the end of 6th grade taking two math classes had 

boosted treated students’ scores to the 29th percentile, but the minimum cut-score for 

achievement level 2 was at the 39th percentile, much higher than it had been for the 5th grade 

test. Figure 8 plots the probability of scoring in achievement level 1 on the 6th grade math test 

(top panel) and similarly the probability of scoring in level 2 (bottom panel) against 5th grade 

math test score. There is no evidence that treatment in 6th grade affected achievement level on 

the 6th grade test. Moreover, as shown in figure 1, not all level 1 and level 2 students were 

treated, so effect of treatment in 6th grade on the probability of treatment in 7th grade,       , is a 

fraction of any discontinuity that there might appear to be in figure 8. The pattern depicted in 

                                                 
24

 Under the assumption          the persistence estimates in table 6 panel A are closely related to the general 

persistence estimator proposed by Jacob, Lefgren, and Sims (2010). The assumption          is analogous to the 

exclusion restriction in Jacob, Lefgren, and Sims’ instrumental variables approach.  



 

30 

 

figure 8 is similar when the y-axis is switched to achievement level on the 7th grade test 

(available in the online appendix). 

Table 7 and figure 9 provide additional robustness checks for the persistence estimates. 

First, the main estimates, replicated in table 7 row 1, use a sample of non-attriting students. 

Excluding attriters would positively bias those estimates if, as seems plausible, the achievement 

growth of attriting students was less well served by treatment. To check for attrition related bias, 

row 2 of table 7 replicates the preferred estimation strategy but with a larger sample that includes 

students who attrit after 7th grade. With these attriters included, the one-year persistence point 

estimate is actually higher, contrary to the expected bias, though I cannot reject the null that the 

row 1 and row 2 estimates are equivalent. Second, in row 3 I report persistence estimates using 

the more common single-instrument FRD methods. These estimates are much lower, suggesting 

more bias here than in the estimates of immediate effects in table 5. However, again, I cannot 

reject the null that row 3 and row 1 are equivalent. Third, figure 9 shows the preferred estimation 

approach for varying bandwidths. Estimated persistence is robust to bandwidth choice, though 

less precisely estimated at smaller bandwidths. At the level 2/level 3 cut-score persistence two 

years out is more sensitive but also much noisier at small bandwidths. 

 Finally, Cascio and Staiger (2012) provide both theoretical and empirical evidence that 

estimated fadeout is partly a statistical artifact of the common practice, which I follow in this 

paper, of standardizing student test scores within grade and cohort. They estimate that perhaps 

10-20 percent of estimated fadeout is simply an artifact of rescaling test scores each year to have 

unit variance while the true variance is growing. While this would negatively bias my persistence 

estimates, the potential bias is small relative to the effects reported here and I would still reject 

the null of complete persistence. 
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4.3. Math Outcomes During High School 

 While the initial math test score gains in 6th grade largely fadeout by the end of 8th 

grade, this fadeout does not rule out treatment benefits in the longer run. Chetty et al. (2011) and 

Chetty, Friedman, and Rockoff (2013b), as examples, document cases where large initial test 

score gains for young students fadeout, but in the long run treatment boosts college going, 

earnings, and other adult outcomes. I do not have measures of adult outcomes, but I do observe 

various attainment and achievement outcomes during high school. In the remainder of this 

section I report on high school math outcomes, and in the next section turn to outcomes in other 

subjects. 

 Table 8 columns 1 and 5 report reduced form effects of taking a second math class in 6th 

grade on several math outcomes during high school. These effects are estimated using the same 

reduced form methods as table 6 panel A—assuming no effect of treatment in 6th grade on future 

treatment. However, the estimation sample is smaller and the estimates often much less precise; 

the sample is limited to cohorts who have reached 9th (10th, 12th) grade by the 2012-13 school 

year, and students who remained enrolled in Miami-Dade schools through that grade. Columns 3 

and 7 report the mean of each outcome among the students in the estimation sample. 

 There is little evidence of re-emergence in math, at least during the high school years. I 

find no statistically significant effects of a two-math-class treatment in 6th grade on the 

probability of enrolling in Algebra I (or a higher level course) during 9th grade, nor enrolling in 

Algebra II (or higher) by the end of high school.
25

 These two benchmark outcomes are often 

                                                 
25

 For a subset of 6th grader cohorts in my analysis sample I also have data on course grades during 9th grade. For 

this even smaller sample, I estimated treatment effects on passing Algebra I by the end of 9th grade, and earning a B 

or higher in Algebra I by the end of 9th grade. Additionally, for one cohort I have grades for all high school years, 

9th through 12th grades. With these data I estimated treatment effects on three outcomes each measured at the end 
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cited as indicating students who are “on track” in high school mathematics, and prepared for 

college mathematics. There are similarly no significant effects on math test scores at the end of 

9th grade or 10th grade.
26

 However, these high school differences are much less precisely 

estimated than outcomes in middle school. 

The imprecision is an important consideration. For example, consider end-of-10th grade 

test scores for students at the 24th percentile of the 5th grade distribution (i.e., the level 1/level 2 

cut); I cannot rule out a positive math gain of 0.25 student standard deviations, nor can I rule out 

a loss of 0.05 standard deviations. A 0.25 standard deviation increase in test scores would 

certainly be important, and change the apparent pattern of persistence. Similarly for students near 

the 50th percentile (the level 2/level 3 cut), I cannot rule out a 5 percentage point increase or 8 

percentage point decrease in the probability of completing Algebra I by 9th grade. With time, the 

aging of additional cohorts should allow for tighter estimates.
27

 

 Columns 2 and 6 of table 8 report estimates analogous to panel B of table 6; estimates 

which are (partially) corrected for the dynamic nature of the treatment regime. These estimates 

do account for how treatment in 6th grade to effects treatment in 7th and 8th grade, but do not 

model any differential resources or treatments in 9th grade or beyond. Equation 5 becomes 

 

 

                                                                                                                                                             
of high school: having passed Algebra II, having earned a B or higher in Algebra II, and cumulative GPA in math 

classes. Results for these grade-related outcomes are presented in the online appendix table A2. Treatment had no 

statistically significant effect on these outcomes, though the reduced samples contribute to much less precision.  
26

 Estimation samples for 9th and 10th grade test scores are further limited because Florida stopped giving a general 

end-of-grade 9th grade math test after 2009-10 and stopped giving a 10th grade test after 2010-11. The state 

switched to end-of-course exams. 
27

 Two estimates in table 8—the effects for 9th and 10th grade tests for students at the level 2/level 3 cut-score—are 

precisely estimated enough to reject a naïve prediction one might have made based on the test gains measured at the 

end of 6th grade. Specifically, I can reject the naïve prediction formed by multiplying (i) the bivariate OLS 

coefficient from the regression of 9th (10th) grade score on 6th grade score, and (ii) the estimated treatment effect 

on 6th grade score. These predictions are 0.102 and 0.097 student standard deviations for 9th and 10th grade scores 

respectively. I cannot reject a similar naïve prediction for other outcomes and samples in table 8. 
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 , 

(6) 

where     for outcomes in 9th grade,     for 10th grade test score, and     for outcomes 

by the end of high school. The estimates based on equation 6 in columns 2 and 6 are quite similar 

to the reduced form estimates in columns 1 and 5.  

 

5. Effects on Achievement in Other Subjects and Attainment 

Focusing attention only on math outcomes hides potentially important costs in other 

subjects. If the school day is fixed, allocating more time to math must reduce time spent in other 

subjects. As shown in figure 2, in Miami’s middle schools a second, remedial math class most 

often crowded out a P.E. class. Other treated students missed out on classes in the arts and music 

or foreign languages. First, this crowd out will directly reduce achievement in the forgone 

subjects during the short run (treatment year), which may alter the trajectory of longer run 

achievement. Second, assuming math is more cognitively taxing than P.E. or arts for treated 

students, then the crowd out may also reduce effort in other classes, like English language arts; 

or reduce homework effort by increasing the marginal value of students’ leisure time. To better 

understand these potential costs I examine treatment effects on outcomes in non-math subjects 

during the treatment year and during high school. However, because fewer cohorts of students 

have aged through high school, those analysis samples are smaller and effect estimates much less 

precise. 

First consider effects during the treatment year. I find that taking a second, remedial math 

class during 6th does not change reading test scores at the end of 6th grade. The reading test 

point estimates shown in table 9 row 1 are estimated with the same sample and multi-site multi-
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treatment FRD methods as the math test estimates in table 5 column 1. For students near the 50th 

percentile of math achievement, the estimated treatment effect is negative but very small (0.007 

student standard deviations) and not statistically significant.
28

  

Based on this one measure—reading achievement—increasing math instruction and 

crowding out some other subject does not appear to harm outcomes in non-math subjects that 

remain on the student’s schedule during the treatment year. Yet there are many unmeasured 

outcomes. At a minimum, students give up the consumption value of time spent in the arts, 

physical activity, and other subjects. Additionally, recent research on 5th grade boys from 

Cawley, Frisvold, and Meyerhoefer (2012) suggests missing out on P.E. time has a causal effect 

on BMI and the probability of childhood obesity. 

Now consider effects into the high school years, especially effects on the subjects 

crowded out by treatment: P.E., arts, or foreign languages in the Miami case. Achievement in 

these subjects is not tracked with standardized tests, but some outcome measures are available 

from students’ high school transcripts. The estimation sample for these non-math outcomes is 

limited to cohorts who have reached 12th grade by the 2012-13 school year, and students who 

remained enrolled at Miami-Dade schools through 12th grade. 

Figure 10 plots the proportion of students who completed two years (or more) of foreign 

language by the end of high school. Two years of foreign languages is often a (stated) 

requirement for admission to selective colleges and universities. No discontinuities are apparent 

in figure 10, but, as discussed above, this reduced form evidence may obscure effects since 

figure 10 does not account for other treatments or the dynamic treatment assignment. Table 9 

                                                 
28

 The lack of treatment effect on reading scores in 6th grade, the treatment year, is also true in the years after 

treatment: 7th through 10th grades. In results not presented here, I examined reading scores using the same methods 

developed for math scores. As the 6th grade effect, point estimates were close to zero and not statistically 

significant. 
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row 3 reports the estimated local average treatment effect, adjusted and scaled-up using the 

multi-site multi-treatment FRD method. In these adjusted estimates, students at the 50th 

percentile of the 5th grade math distribution who take a second math class during 6th grade are 

about 10 percentage points less likely to have completed two years of foreign languages by the 

end of high school. Approximately one-quarter of the analysis sample completed two years of 

foreign language (column 7). A 10 point effect is large, especially given the comparatively small 

displacement in foreign language taking during the treatment year and no displacement during 

7th or 8th grade discussed in section 2. This effect should be interpreted with caution. First, it is 

the sole difference among several outcomes tested in tables 8 and 9. Second, the estimates are 

much less precise. I cannot reject essentially zero effect; the upper 95 percent confidence interval 

is less than a 1 point decline.
29

 

 By contrast, I find no evidence that treatment changed students P.E. or music and arts 

course taking during high school, though the outcome measures here are admittedly simple. 

Rows 4 and 5 of table 9 report treatment effects on the number of years a student took a course in 

P.E. and music or arts respectively. The point estimates are sometimes positive, sometimes 

negative, and small relative to the sample averages of about 1.5 P.E. and 1.5 arts classes. No 

difference is statistically significant, though quite imprecise. The largest potential difference is at 

the level 1/level 2 cut-score where I cannot rule out a reduction of up to one semester of arts or 

music courses.
30

  

                                                 
29

 A naïve prediction (as detailed in footnote 27) based on the correlation between 6th grade test scores and high 

school foreign language attainment would have predicted a 3 point increase in the probability of completing two 

years. I can reject this naïve prediction, but cannot reject any other similarly formed naïve prediction for the 

outcomes and samples in table 9. 
30

 For one cohort of students I have data on course grades for all four high school years. For this one cohort sample, 

using the same methods as table 9, I estimated treatment effects on GPA excluding math classes, and on GPA for 

core non-math classes (i.e., ELA, science, and social studies). I also examined P.E. GPA, arts and music GPA, and 

foreign language GPA for students who took at least one class in the given subject. Results are presented in the 

online appendix table A2. Treatment had no effect on any of these course grade outcomes. 
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Finally, I find no effect of the two math class treatment in 6th grade on the probability 

that students persist through high school and graduate on time. The year following a student’s 

first 9th grade year is a critical transition point; most high school dropouts leave at this point and 

many students on the margin of dropping out end up repeating 9th grade. However, row 2 of 

table 9 shows no treatment effect on the probability of enrolling in 10th grade the year after a 

student’s first 9th grade year. Row 6 also shows no statistically significant effect of treatment on 

the probability of graduating high school on time. However, a 5 percent increase in graduation, if 

precisely estimated, would be an important benefit to consider in the policy calculus. And, again, 

I cannot rule out even larger changes in the chances of graduation; I cannot reject a 16-20 

percent increase over the sample average graduation rate, nor can I reject a 6 percent decline.  

    

6. Conclusion 

This paper first provides causal evidence for a perhaps unsurprising first result: doubling 

the typical amount of class time devoted to math instruction substantially increases the math test 

scores of relatively low-achieving middle-school students. Among students quasi-randomly 

assigned to take two math classes—one remedial and one traditional—instead of the traditional 

one math class schedule, contemporaneous math scores rose by 0.16-0.18σ.  

Yet, like many other educational interventions studied empirically, those initial gains did 

not fully persist in the school years after students returned to a regular schedule. One year after 

treatment ended only one-third to one-half of the initial gain remained. Two years out the effects 

had shrunk to one-third the original size. Once students reach high school I find little evidence of 

differences in math achievement or outcomes in other subjects, though the estimates are 
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comparatively less precise and I cannot rule out what would be meaningfully large benefits 

(costs). 

This pattern of decaying effects in the years following treatment is similar to alternative 

strategies for improving achievement, like reducing class size or improving the effectiveness of 

teachers. That similarity suggests a need to reconsider whether current remedial education 

strategies—characterized by short-lived increases in the quantity of instruction—are a cost-

effective way to raise the math achievement of students who currently lag expectations for their 

age. First, and importantly, allocating more of the school day to math imposes an opportunity 

cost of missed instruction in other subjects. In Miami treated students missed out on physical 

education, music and arts, or foreign language classes.  

Increasing math instruction also carries labor costs. During the school years I study in 

this paper, the remediation program in Miami-Dade created roughly one “Intensive Math” class 

for every seven regular math classes. Put differently, the district needed 15 percent more math 

teachers. While some of the salary costs may be offset by reductions in teachers of other 

subjects, the costs of recruitment in the relatively tight math-teacher market are an important 

consideration. Additionally, even if a district, like Miami-Dade, is able to substantially expand 

their math teacher workforce without a loss of quality, the general equilibrium effect on math 

teacher demand must be felt somewhere, presumably in some other district. By contrast, an 

intervention that seeks to improve math achievement by boosting teacher-performance would 

require better selection, development, or job assignment of a school’s existing math teachers. 

Selection and development, as mechanisms for improving the quality of instruction, receive the 

most attention from policy makers and researchers, but the evidence is mixed (Yoon et al. 2007, 

Taylor and Tyler 2012, Rothstein 2012).  
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Given the potential costs of crowding out other subjects, a natural alternative proposal 

would be to increase the total amount of instructional time, either with more or longer school 

days. The existing evidence on the effectiveness of this alternative is not clear, as discussed in 

section 1. Moreover, increasing total time would crowd out current out-of-school activities, and 

would similarly raise demand for math teachers.  

In documenting the initially large but fading gains induced by doubling math instruction, 

the estimates presented in this paper add to a growing literature on the role of quantity of 

instruction in educational production. Students’ seemingly mundane subject-by-subject class 

schedules are an important allocation of a scarce resource with potentially complex long-run 

effects. This decision remains an understudied area in the economics of education. 
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FIGURE 1—PROPORTION STUDENTS TAKING A SECOND, REMEDIAL MATH CLASS  

IN 6TH GRADE BY 5TH GRADE TEST SCORE 
 

NOTE: Square markers represent the mean of an indicator = 1 if the student took two math classes in 6th grade (the 

treatment of interest) (y-axis), within bins of four scale score points on the 5th grade math test (x-axis). Vertical 

dashed lines mark the cut-scores dividing “achievement levels” on the 5th grade test. Local linear fitted lines (solid 

lines) are estimated on all student-level data, within achievement levels, using a rectangular kernel and a bandwidth 

of 23 scale score points. Dotted lines trace the 95 percent confidence interval. 
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FIGURE 2—PROPORTION STUDENTS TAKING A CLASS IN VARIOUS SUBJECT AREAS 

IN 6TH GRADE BY 5TH GRADE TEST SCORE 

 
NOTE: Markers represent the mean of an indicator = 1 if the student took a class in foreign languages (squares), 

music or arts (circles), physical education (diamonds), and English language arts (triangles) in 6th grade (y-axis), 

within bins of four scale score points on the 5th grade math test (x-axis). Vertical dashed lines mark the cut-scores 

dividing “achievement levels” on the 5th grade test. Local linear fitted lines (solid lines) are estimated on all student-

level data, within achievement levels, using a rectangular kernel and a bandwidth of 23 scale score points. Dotted 

lines trace the 95 percent confidence interval. 

  

English language arts 

physical education 

music or arts 

foreign languages 



 

47 

 

 
FIGURE 3—DISTRIBUTION OF 5TH GRADE MATH TEST SCORES (FORCING VARIABLE) 

 

NOTE: Bars measure the proportion of 6th grade students receiving at a particular scale score on the 5th grade end of 

grade math test, in bins of four scale score points. Vertical dashed lines mark the cut-scores dividing “achievement 

levels” on the 5th grade test. 
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FIGURE 4—PRE-TREATMENT STUDENT CHARACTERISTICS BY 5TH GRADE TEST SCORE 

 

NOTE: Square markers represent the mean of the characteristic described on the y-axis, within bins of four scale 

score points on the 5th grade math test (x-axis). Vertical dashed lines mark the cut-scores dividing “achievement 

levels” on the 5th grade test. Local linear fitted lines (solid lines) are estimated on all student-level data, within 

achievement levels, using a rectangular kernel and a bandwidth of 23 scale score points. Dotted lines trace the 95 

percent confidence interval. 
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FIGURE 5— CHARACTERISTICS OF REGULAR MATH CLASS IN 6TH GRADE  

BY 5TH GRADE TEST SCORE 
 

NOTE: Square markers represent the mean of the characteristic described on the y-axis, within bins of four scale 

score points on the 5th grade math test (x-axis). Vertical dashed lines mark the cut-scores dividing “achievement 

levels” on the 5th grade test. Local linear fitted lines (solid lines) are estimated on all student-level data, within 

achievement levels, using a rectangular kernel and a bandwidth of 23 scale score points. Dotted lines trace the 95 

percent confidence interval. 
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FIGURE 6—STUDENT MATH ACHIEVEMENT GAINS OVER TIME 

BY 5TH GRADE TEST SCORE 
 

NOTE: Square markers represent the mean math test score gain 6th grade score minus 5th grade score (top panel), 

7th minus 5th gain (middle panel), and 8th minus 5th gain (bottom panel) (y-axis), within bins of four scale score 

points on the 5th grade math test (x-axis). Vertical dashed lines mark the cut-scores dividing “achievement levels” 

on the 5th grade test. Local linear fitted lines (solid lines) are estimated on all student-level data, within achievement 

levels, using a rectangular kernel and a bandwidth of 23 scale score points. Dotted lines trace the 95 percent 

confidence interval. 
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PANEL A—LEVEL 1/LEVEL 2 CUT-SCORE 

 
PANEL B—LEVEL 2/LEVEL 3 CUT-SCORE 

 
 

FIGURE 7— ESTIMATED TREATMENT EFFECT ON MATH TEST SCORES AT  

THE END OF 6TH GRADE BY VARYING BANDWIDTHS  
 

NOTE: The solid line traces out a series of treatment effect point estimates (y-axis). Each point is estimated with the 

same multi-site FRD methods used for table 5 columns 1 and 5, except that each point is estimated with a different 

integer bandwidth (x-axis). The dotted lines trace out the 95 percent confidence intervals. The square markers 

indicate the point estimate corresponding to the optimal bandwidth 23 reported in table 5, row 1, columns 1 and 5.   
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FIGURE 8—PROPORTION STUDENTS SCORING AT ACHIEVEMENT LEVEL 1 OR 2 ON  

THE 6TH GRADE MATH TEST BY 5TH GRADE TEST SCORE 
 

NOTE: Square markers represent the mean of an indicator = 1 if the student’s 6th grade math test score placed them 

in “achievement level 1” (top panel), or in “achievement level 2” (bottom panel) (y-axis), within bins of four scale 

score points on the 5th grade math test (x-axis). Vertical dashed lines mark the cut-scores dividing “achievement 

levels” on the 5th grade test. Local linear fitted lines (solid lines) are estimated on all student-level data, within 

achievement levels, using a rectangular kernel and a bandwidth of 23 scale score points. Dotted lines trace the 95 

percent confidence interval. 
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PANEL A—LEVEL 1/LEVEL 2 CUT-SCORE 

 
PANEL B—LEVEL 2/LEVEL 3 CUT-SCORE 

 
 

FIGURE 9— ESTIMATED PERSISTENCE OF GAINS IN 6TH GRADE AT THE END OF 7TH AND 8TH 

GRADE BY VARYING BANDWIDTHS  
 

NOTE: The solid line traces out a series of persistence point estimates (y-axis). Each point is estimated with the same 

dynamic-treatment-assignment multi-site FRD methods used for table 6 panel B, except that each point is estimated 

with a different integer bandwidth (x-axis). The dotted lines trace out the 95 percent confidence intervals. The 

square markers indicate the point estimate corresponding to the optimal bandwidth 23 reported in table 6, panel B, 

row 2.  
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FIGURE 10—PROPORTION STUDENTS COMPLETING TWO YEARS OF FOREIGN LANGUAGES AT THE 

END OF HIGH SCHOOL BY 5TH GRADE TEST SCORE 
 

NOTE: Square markers represent the mean of an indicator = 1 if the student completed two years of foreign language 

by the end of high school, (y-axis), within bins of four scale score points on the 5th grade math test (x-axis). Vertical 

dashed lines mark the cut-scores dividing “achievement levels” on the 5th grade test. Local linear fitted lines (solid 

lines) are estimated on all student-level data, within achievement levels, using a rectangular kernel and a bandwidth 

of 23 scale score points. Dotted lines trace the 95 percent confidence interval. Sample limited to cohorts who began 

6th grade in 2004-05 through 2007-09, and who remained enrolled in the district through 12th grade. 
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Table 1—Course taking during the treatment year 

     

 

5th grade math test score below… 

 

level 1/2  

cut-score 

level 2/3  

cut-score 

level 3/4  

cut-score 

level 4/5  

cut-score 

 

(1) (2) (3) (4) 

     Took a second math class 0.1889** 0.1271** 0.0024 -0.0001 

 

(0.0117) (0.0070) (0.0019) (0.0017) 

     Took a class in … 

       Physical education -0.0696** -0.0444** -0.0013 0.0254 

 

(0.0145) (0.0070) (0.0091) (0.0212) 

   Music or arts -0.0423** -0.0377** 0.0017 0.0038 

 

(0.0119) (0.0092) (0.0109) (0.0144) 

   Foreign language -0.0300* -0.0182* 0.0157 -0.0051 

 

(0.0119) (0.0070) (0.0102) (0.0170) 

   English language arts 0.0006 -0.0001 -0.0000 0.0001 

 

(0.0004) (0.0002) (0.0002) (0.0001) 

   Science -0.0007 0.0003 0.0001 a 

 

(0.0006) (0.0004) (0.0003) 

    Social studies 0.0011 -0.0001 0.0001 -0.0000 

 

(0.0008) (0.0005) (0.0004) (0.0001) 

     Student Observations 18868 35637 34906 14664 

          

 

Note: Each cell reports a local average treatment effect from a separate regression, estimated using standard sharp 

regression discontinuity methods. Each dependent variable is an indicator = 1 if, for row 1, the student took a second 

math course; and, for rows 2-7, if the student took a any course in the subject during their 6th grade year. The 

independent variables include (i) an indicator = 1 if the student scored below the given cut-score (the reported 

coefficient), (ii) a linear term for the forcing variable (5th grade test score), and (iii) an interaction of the indicator 

and forcing variable which allows the slope to differ above and below the cut-score. Estimation is by local-linear 

least squares using a rectangular kernel and bandwidth of 23 scale score points above/below the cut-score. The 

estimation sample is restricted to 6th grade students who were subsequently observed in 7th and 8th grades. 

Standard errors are clustered at the discrete values of the forcing variable.  
a
 All students in this cell took a science course. 

* indicates p<0.05, ** p<0.01 
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Table 2—Pre-treatment student characteristics 

          

 

A: 

 

B: 

 

C: 

 

Mean  

(standard deviation) 

 Relative likelihood  

that compliers have  

the characteristic  

Estimated 

pre-treatment 

discontinuity  

(standard error) 

 

All 

students 

  Students 

with data 

for grades 

6, 7, 8  

  

 

 

 

level 1/2  

cut-score 

level 2/3  

cut-score 

 

level 1/2  

cut-score 

level 2/3  

cut-score 

 

(1) 

 

(2) 

 

(3) (4) 

 

(5) (6) 

          Student observations 131,172 

 

90,262 

 

18865 35637 

 

18865 35637 

          Math test score, 5th grade -0.019 

 

0.148 

      

 

(1.002) 

 

(0.899) 

      Math test score gain, 0.033 

 

0.035 

    

0.032 -0.003 

   4th to 5th grade (0.628) 

 

(0.587) 

    

(0.020) (0.010) 

Reading test score gain 0.037 

 

0.036 

    

0.032 -0.014 

   4th to 5th grade (0.641) 

 

(0.607) 

    

(0.017) (0.012) 

          Female 0.485 

 

0.518 

 

1.031 1.116 

 

0.008 0.012 

        

(0.014) (0.009) 

Hispanic 0.617 

 

0.630 

 

1.205 0.967 

 

-0.001 0.002 

        

(0.014) (0.010) 

African-American 0.264 

 

0.249 

 

0.712 1.113 

 

-0.004 -0.004 

        

(0.014) (0.007) 

White 0.093 

 

0.095 

 

0.884 0.883 

 

0.010 0.005 

        

(0.005) (0.008) 

Free or reduced lunch 0.685 

 

0.645 

 

0.987 0.997 

 

-0.012 0.009 

        

(0.013) (0.007) 

English language learner 0.526 

 

0.536 

 

1.114 1.029 

 

0.000 0.000 

        

(0.013) (0.006) 

Frequently absent  0.148 

 

0.125 

 

1.131 0.941 

 

0.002 -0.003 

   (>12 absences 5th grade) 

       

(0.009) (0.004) 

Repeating 6th grade 0.021  

 

0.019 

 

1.802 0.921 

 

0.002 0.001 

        

(0.004) (0.002) 

                    

 

Note: Column group A: Author's calculations of means (standard deviations) for 6th grade Miami-Dade middle 

school students pooling the 2004-05 to 2008-09 school years. Column 2 reports statistics for the subsample of 6th 

grade students with complete data for 6th, 7th, and 8th grades.  

     Column group B: Ratio of (i) the fuzzy regression discontinuity first-stage compliance estimate (as in table 1 

column 1) for students with the specified characteristic (e.g., Hispanic students), over (ii) the compliance estimate 

among all students. See text and Angrist and Pischke (2009, pp. 171-172) for interpretation of this ratio. 

     Column group C: Each cell reports a treatment "effect" on a pre-treatment variable from a separate regression, 

estimated using standard sharp regression discontinuity methods. Each dependent variable is the pre-treatment 

characteristic. The independent variables include (i) an indicator = 1 if the student scored below the given cut-score 

(the reported coefficient), (ii) a linear term for the forcing variable (5th grade test score), and (iii) an interaction of 

the indicator and forcing variable which allows the slope to differ above and below the cut-score. Estimation is by 

local-linear least squares using a rectangular kernel and bandwidth of 23 scale score points above/below the cut-

score. Standard errors are clustered at the discrete values of the forcing variable.  

* indicates p<0.05, ** p<0.01 for columns 5 and 6. 
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Table 3—Discontinuities in the characteristics of students' regular math  

and English language arts classes in 6th grade 

     

 

5th grade math test score below… 

 

level 1/2  

cut-score 

level 2/3  

cut-score 

level 3/4  

cut-score 

level 4/5  

cut-score 

 

(1) (2) (3) (4) 

Regular math class characteristics 

       Advanced or honors section -0.007 -0.088** -0.063** -0.013 

 

(0.005) (0.012) (0.009) (0.010) 

   Class mean prior math score -0.040** -0.104** -0.058** -0.029* 

 

(0.012) (0.010) (0.007) (0.011) 

   Class st. dev. prior math score 0.012** 0.024** 0.012** -0.002 

 

(0.004) (0.004) (0.003) (0.005) 

   Teacher value-added measure 0.001 -0.004 -0.004 -0.001 

 

(0.004) (0.002) (0.003) (0.003) 

   Teacher has master's degree -0.023 0.006 -0.011 -0.017 

 

(0.016) (0.009) (0.008) (0.020) 

   Teacher years of experience (in district) 0.235 -0.244 -0.084 -0.395 

 

(0.276) (0.192) (0.217) (0.250) 

English language arts class characteristics 

       Class mean prior math score 0.003 -0.015 -0.007 -0.031 

 

(0.018) (0.010) (0.008) (0.015) 

   Class st. dev. prior math score 0.002 0.002 -0.008* -0.001 

 

(0.006) (0.003) (0.003) (0.005) 

   Class mean prior ELA score 0.000 -0.022 -0.005 -0.021 

 

(0.024) (0.012) (0.009) (0.017) 

   Class st. dev. prior ELA score 0.002 0.002 -0.008 0.003 

 

(0.006) (0.003) (0.004) (0.004) 

     Student observations 18865 35637 34905 14664 

          

 

Note: Each cell reports a local average treatment effect from a separate regression, estimated using standard sharp 

regression discontinuity methods. Dependent variables are the characteristics listed for each row. All class mean and 

standard deviation dependent variables are jackknife, excluding the student herself from the calculation. See 

footnote X for a description of the teacher value-added scores. The independent variables include (i) an indicator = 1 

if the student scored below the cut-score given in the column header (the reported coefficient), (ii) a linear term for 

the forcing variable (5th grade test score), and (iii) an interaction of the indicator and forcing variable which allows 

the slope to differ above and below the cut-score. Estimation is by local-linear least squares using a rectangular 

kernel and bandwidth of 23 scale score points above/below the cut-score. The estimation sample is restricted to 6th 

grade students who were subsequently observed in 7th and 8th grades. Standard errors are clustered at the discrete 

values of the forcing variable.  

* indicates p<0.05, ** p<0.01  
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Table 4—Between school variation in assignment of treatments at the cut-scores 

            

    

Regular math class characteristics 

 

Took second  

math class 

 

Advanced or 

honors section 

 

Class mean prior 

math score 

 

Class st. dev. 

prior math score 

 

level 

1/2  

cut 

level 

2/3  

cut 

 

level 

1/2  

cut 

level 

2/3  

cut 

 

level 

1/2  

cut 

level 

2/3  

cut 

 

level 

1/2  

cut 

level 

2/3  

cut 

 

(1) (2) 

 

(3) (4) 

 

(5) (6) 

 

(7) (8) 

Between-school distribution of treatment discontinuity estimates 

         90th percentile 0.577 0.430 

 

0.053 0.040 

 

0.085 0.062 

 

0.103 0.095 

   75th percentile 0.341 0.241 

 

0.015 0.000 

 

0.050 0.014 

 

0.056 0.054 

   Mean 0.196 0.133 

 

-0.005 -0.081 

 

-0.052 -0.105 

 

0.015 0.026 

   25th percentile 0.000 0.000 

 

-0.030 -0.123 

 

-0.112 -0.167 

 

-0.024 -0.011 

   10th percentile -0.018 0.000 

 

-0.071 -0.240 

 

-0.328 -0.365 

 

-0.064 -0.060 

            Correlation between level 1/2 and level 2/3 discontinuities on same treatment 

 

-0.39 

 

0.08 

 

-0.01 

 

0.03 

            Correlation between different treatment discontinuities at same cut-score 

       Second math class 1 1 

            Advanced or honors -0.15 -0.15 

 

1 1 

         Class mean -0.14 -0.07 

 

0.14 0.74 

 

1 1 

      Class st. dev. -0.01 0.07 

 

0.02 -0.53 

 

-0.47 -0.77 

 

1 1 

                        

 

Note: Summary statistics of school-level estimates of discontinuities at the 5th grade math test cut-scores for 145 

schools. Each school-level estimate is estimated in a separate regression using the specification described in the 

notes for tables 1 and 3, and with the sample restricted to only observations from the given school. In all cases the 

estimation sample is restricted to 6th grade students who were subsequently observed in 7th and 8th grades. 

Distribution parameters and correlations are weighted by the number of student observations for the school. 
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Table 5—Effect of second, remedial math class on achievement at end of treatment year 

          

 

Prior grade math test score below … 

 

level 1/2 cut-score 

 

level 2/3 cut-score 

 

Multi-

site 

FRD 

Standard 

FRD 

Intent- 

to-treat  

RD 

Student 

obs. 

 

Multi-

site 

FRD 

Standard 

FRD 

Intent- 

to-treat  

RD 

Student 

obs. 

 

(1) (2) (3) (4) 

 

(5) (6) (7) (8) 

A: Effect of treatment in 6th grade on grade 6 test score 

   Observed in 6th, 7th,  0.166 0.260 0.049 18865 

 

0.176 0.220 0.028 35637 

      and 8th grades (0.044) (0.099) (0.019) 

  

(0.024) (0.090) (0.012) 

 

 

[104.5] [261.1] 

   

[5091.2] [329.5] 

            
   Observed in 6th and  0.158 0.253 0.049 24337 

 

0.180 0.181 0.025 45279 

      7th grades (0.038) (0.083) (0.016) 

  

(0.020) (0.068) (0.010) 

 

 

[35.8] [294.3] 

   

[7265.2] [340.9] 

            
   Observed in 6th grade 0.143 0.301 0.051 36499 

 

0.188 0.204 0.028 62108 

 

(0.043) (0.058) (0.010) 

  

(0.015) (0.057) (0.008) 

 

 

[37.7] [322.2] 

   

[3342.0] [533.5] 

  
          
B: Effect of treatment in 7th grade on grade 7 test score 

   Observed in 7th grade 0.187 0.171 0.039 38994 

 

0.172 0.196 0.035 50887 

 

(0.030) (0.032) (0.007) 

  

(0.017) (0.033) (0.006) 

 

 

[62.0] [989.0] 

   

[2978.6] [1516.0] 

  
          
C: Effect of treatment in 8th grade on grade 8 test score 

   Observed in 8th grade 0.130 0.131 0.030 37463 

 

0.130 0.181 0.032 55954 

 

(0.024) (0.042) (0.010) 

  

(0.017) (0.034) (0.006) 

 

 

[51.5] [1416.1] 

   

[1627.9] [1404.5] 

                      

 

Note: Each cell reports a local average treatment effect from a separate regression, estimated using various 

regression discontinuity methods (indicated in column headings). Treatment period and estimations samples are 

described in row titles. In all cases the dependent variable is standardized math test score at the end of the treatment 

school year. Standard errors are clustered at the discrete values of the forcing variable. F-statistic for test of joint 

significance of excluded instrument(s) shown in brackets. 

     "Intent-to-treat RD" estimates use standard sharp regression discontinuity methods. The independent variables 

include (i) an indicator = 1 if the student scored below the given cut-score (the reported coefficient), (ii) a linear 

term for the forcing variable (prior year test score), and (iii) an interaction of the indicator and forcing variable 

which allows the slope to differ above and below the cut-score. Estimation is by local-linear least squares using a 

rectangular kernel and bandwidth of 23 scale score points above/below the cut-score.  

     "Standard RD" estimates use standard fuzzy regression discontinuity methods. The specification is identical to 

the "Intent to treat RD" estimates except that it includes a treatment indicator = 1 if the student took a second math 

class (the reported coefficient), and the indicator for scoring below the cut-score is the excluded instrument for the 

treatment indicator. Estimation is by two-stage least squares. 

     "Multi-site FRD" estimates are also instrumental variables estimates. The specification is identical to the "Single-

instrument RD" estimates except that it includes four endogenous treatment variables: (i) an indicator = 1 if the 

student took a second math class (the reported coefficient), (ii) an indicator = 1 if the student's regular math class 

was an advanced or honors section, (iii) the jackknife mean of baseline math test score among the student's regular 

math class peers, and (iv) the jackknife standard deviation of baseline math score among the same peers. The 

excluded instruments are a vector of indicator variables formed by the interaction of (i) the standard indicator 

variable = 1 if the student scored below the cut-score, and (ii) school-specific indicators. The specification also 

includes school fixed effects. Estimation is by limited information maximum likelihood. 

     All estimates are different from zero at p<0.01  
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Table 6—Persistence over-time of achievement gains from second, remedial math class in 6th grade 

        

 

5th grade math test score below … 

 

level 1/2 cut-score   level 2/3 cut-score 

        

 

Grade 6  

test score 

Grade 7  

test score 

Grade 8  

test score 

 

Grade 6  

test score 

Grade 7  

test score 

Grade 8  

test score 

 

(1) (2) (3) 

 

(4) (5) (6) 

        A: Total effect of treatment in 6th grade (reduced form estimate) 

   Treatment effect 0.166 0.139 0.066 

 

0.176 0.099 0.056 

 

(0.044) (0.046) (0.042) 

 

(0.024) (0.030) (0.023) 

           Persistence of total effect in 6th grade 

 

0.836 0.400 

  

0.564 0.316 

  

(0.357) (0.272) 

  

(0.187) (0.138) 

        B: Marginal effect of treatment in 6th grade (dynamic-treatment, indirect FRD estimate) 

   Treatment effect 

 

0.122 0.064 

  

0.077 0.031 

  

(0.047) (0.042) 

  

(0.030) (0.024) 

           Persistence of total effect in 6th grade 

 

0.737 0.387 

  

0.438 0.178 

  

(0.343) (0.273) 

  

(0.182) (0.136) 

                

 

Note: Panel A: Each cell in row 1 reports a local average treatment effect from a separate regression, estimated 

using multi-site FRD methods. The dependent variable is standardized math test score at the end of 6th grade 

(columns 1, 4), 7th grade (columns 2, 5), or 8th grade (columns 3, 6). The specification includes four endogenous 

treatment variables: (i) an indicator = 1 if the student took a second math class in 6th grade (the reported 

coefficient), (ii) an indicator = 1 if the student's regular math class in 6th grade was an advanced or honors section, 

(iii) the jackknife mean of baseline math test score among the student's regular math class peers in 6th grade, and 

(iv) the jackknife standard deviation of baseline math score among the same peers. The excluded instruments are a 

vector of indicator variables formed by the interaction of (i) the standard indicator variable = 1 if the student scored 

below the cut-score on the 5th grade math test, and (ii) school-specific indicators. Additional included regressors 

include: (i) a linear term for the forcing variable (5th grade test score), (ii) an interaction of the indicator for scoring 

below the cut-score and forcing variable, and (iii) school fixed effects. Estimation is by limited information 

maximum likelihood using a rectangular kernel and bandwidth of 23 scale score points above/below the cut-score. 

The estimation sample is restricted to students who were observed in 6th, 7th, and 8th grades. Standard errors are 

clustered at the discrete values of the forcing variable. Row 2 reports persistence estimates: the ratio of the estimated 

7th grade effect over the estimated 6th grade effect (columns 2, 5), and 8th grade over 6th grade (columns 3, 6).  

     Panel B: Row 1 reports the LATE estimates using the "indirect FRD" method described in detail in the text 

which explicitly models the dynamic nature of treatment assignment. As described in equation 4, the marginal effect 

of treatment in 6th grade on 7th grade test scores (columns 2, 5) can be written as (a) the total effect of treatment in 

6th grade on 7th grade test scores (shown in panel A), minus the product of two terms (b) the effect of treatment in 

6th grade on the probability of treatment in 7th grade, and (c) the effect of treatment in 7th grade on 7th grade test 

scores. Each of these constituent terms (a), (b), and (c) are estimated using the multi-site FRD methods described for 

panel A. Standard errors are calculated using the delta method. To obtain the complete covariance matrix, the 

various constituent terms are estimated simultaneously using the "stacked equation" approach described in the text. 

An analogous approach is used for the marginal effect of treatment in 6th grade on 8th grade test scores, which is 

detailed in equation 5 in the text. Row 2 again reports the persistence estimate ratios. 
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Table 7—Alternative persistence estimates 

      

 

5th grade math test score below … 

 

level 1/2 cut-score   level 2/3 cut-score 

      

 

Grade 7  

test score 

Grade 8  

test score 

 

Grade 7  

test score 

Grade 8  

test score 

 

(1) (2) 

 

(3) (4) 

      Prefered estimate (table 6 row 4) 0.737 0.387 

 

0.438 0.178 

 

(0.343) (0.273) 

 

(0.182) (0.136) 

      Students observed in grades 6-7 0.891 

  

0.721 

    but not necessarily in grade 8 (0.351) 

  

(0.223) 

 

      Standard single-treatment FRD 0.449 0.146 

 

0.175 -0.040 

 

(0.596) (0.468) 

 

(0.293) (0.300) 

            

 

Note: Row 1 repeated from table 6 row 4. See estimation notes in table 6. Row 2 estimation methods are identical to 

row 1 except that the sample is expanded to include students who have complete data in grades 6 and 7, but not 

necessarily in grade 8. Row 3 returns to the same estimation sample as row 1, but uses a standard fuzzy regression 

discontinuity approach with one endogenous treatment variable, the two math class treatment indicator. See 

estimation notes in table 5 for a description. 
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Table 8—Effect of second, remedial math class on math outcomes high school 

          

 

5th grade math test score below … 

 

level 1/2 cut-score 

 

level 2/3 cut-score 

 

Total 

effect 

(reduced 

form) 

Marginal 

effect 

(indirect 

FRD) 

Estimation 

sample 

mean (sd) 

Student 

obs. 

 

Total 

effect 

(reduced 

form) 

Marginal 

effect 

(indirect 

FRD) 

Estimation 

sample 

mean (sd) 

Student 

obs. 

 

(1) (2) (3) (4) 

 

(5) (6) (7) (8) 

Math test score at the end of 

           Grade 9 0.0225 0.0158 -0.3569 10389 

 

-0.007 -0.024 0.127 19499 

 

(0.064) (0.064) (0.616) 

  

(0.051) (0.051) (0.521) 

    Grade 10 0.099 0.102 -0.357 9194 

 

-0.013 -0.022 0.089 18024 

 

(0.078) (0.078) (0.625) 

  

(0.056) (0.056) (0.520) 

 By the end of 9th grade 

            Completed Algebra I 0.003 0.003 0.979 17898 

 

-0.015 -0.016 0.991 33818 

 

(0.009) (0.009) 

   

(0.033) (0.033) 

  By the end of high school 

           Completed Algebra I -0.004 -0.004 0.999 8643 

 

0.000 0.001 0.999 17285 

 

(0.004) (0.004) 

   

(0.005) (0.006) 

     Completed Algebra II -0.021 -0.024 0.898 8643 

 

-0.005 -0.005 0.939 17285 

 

(0.037) (0.037) 

   

(0.023) (0.023) 

                      

 

Note: "Total effect (reduced form)" estimates, columns 1 and 5: Each cell reports a local average treatment effect 

from a separate regression, estimated using multi-site FRD methods. The dependent variable is described in the row 

label. The specification includes four endogenous treatment variables: (i) an indicator = 1 if the student took a 

second math class in 6th grade (the reported coefficient), (ii) an indicator = 1 if the student's regular math class in 

6th grade was an advanced or honors section, (iii) the jackknife mean of baseline math test score among the student's 

regular math class peers in 6th grade, and (iv) the jackknife standard deviation of baseline math score among the 

same peers. The excluded instruments are a vector of indicator variables formed by the interaction of (i) the standard 

indicator variable = 1 if the student scored below the cut-score on the 5th grade math test, and (ii) school-specific 

indicators. Additional included regressors include: (i) a linear term for the forcing variable (5th grade test score), (ii) 

an interaction of the indicator for scoring below the cut-score and forcing variable, and (iii) school fixed effects. 

Estimation is by limited information maximum likelihood using a rectangular kernel and bandwidth of 23 scale 

score points above/below the cut-score. The estimation sample is restricted to students who were observed in 6th, 

7th, and 8th grades. Standard errors are clustered at the discrete values of the forcing variable.  

     "Marginal effect (indirect FRD)" estimates, columns 2 and 6: Each cell reports the LATE estimates using the 

"indirect FRD" method described in detail in the text which explicitly models the dynamic nature of treatment 

assignment up through 8th grade. Each of the five terms in equation 6 is estimated using the multi-site FRD methods 

described for columns 1 and 5, and then plugged into equation 6. Standard errors are calculated using the delta 

method. To obtain the complete covariance matrix, the constituent terms are estimated simultaneously using the 

"stacked equation" approach described in the text.  

     Columns 3 and 7 report outcome variable means (standard deviations) for the estimation sample. 

* indicates p<0.05, ** p<0.01 
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Table 9—Effect of second, remedial math class on non-math outcomes 

          

 

5th grade math test score below … 

 

level 1/2 cut-score 

 

level 2/3 cut-score 

 

Total 

effect 

(reduced 

form) 

Marginal 

effect 

(indirect 

FRD) 

Estimation 

sample 

mean (sd) 

Student 

obs. 

 

Total 

effect 

(reduced 

form) 

Marginal 

effect 

(indirect 

FRD) 

Estimation 

sample 

mean (sd) 

Student 

obs. 

 

(1) (2) (3) (4) 

 

(5) (6) (7) (8) 

          Reading score in grade 6 -0.027 

 

-0.343 18828 

 

0.003 

 

0.085 35591 

 

(0.056) 

 

(0.690) 

  

(0.034) 

 

(0.644) 

 

          Successful transition from  -0.008 -0.008 0.904 17898 

 

0.017 0.015 0.946 33818 

   9th to 10th grade (0.029) (0.029) 

   

(0.015) (0.015) 

  

          Two years foreign lang. 0.068 0.064 0.623 8643 

 

-0.102* -0.105* 0.729 17285 

   by the end of high school (0.056) (0.056) 

   

(0.048) (0.049) 

  

          Number of years (0-4) during high school with class in 

   Physical education -0.012 -0.020 1.527 8643 

 

0.024 0.037 1.546 17285 

 

(0.102) (0.102) 

   

(0.100) (0.100) 

     Music or arts -0.113 -0.120 1.399 8643 

 

0.006 0.019 1.579 17285 

 

(0.155) (0.156) 

   

(0.118) (0.118) 

  

          Graduated from high  0.058 0.059 0.804 5697 

 

0.047 0.047 0.887 11226 

   school in four years (0.053) (0.053) 

   

(0.050) (0.050) 

                      

 

Note: "Total effect (reduced form)" estimates, columns 1 and 5: Each cell reports a local average treatment effect 

from a separate regression, estimated using multi-site FRD methods. The dependent variable is described in the row 

label. The specification includes four endogenous treatment variables: (i) an indicator = 1 if the student took a 

second math class in 6th grade (the reported coefficient), (ii) an indicator = 1 if the student's regular math class in 

6th grade was an advanced or honors section, (iii) the jackknife mean of baseline math test score among the student's 

regular math class peers in 6th grade, and (iv) the jackknife standard deviation of baseline math score among the 

same peers. The excluded instruments are a vector of indicator variables formed by the interaction of (i) the standard 

indicator variable = 1 if the student scored below the cut-score on the 5th grade math test, and (ii) school-specific 

indicators. Additional included regressors include: (i) a linear term for the forcing variable (5th grade test score), (ii) 

an interaction of the indicator for scoring below the cut-score and forcing variable, and (iii) school fixed effects. 

Estimation is by limited information maximum likelihood using a rectangular kernel and bandwidth of 23 scale 

score points above/below the cut-score. The estimation sample is restricted to students who were observed in 6th, 

7th, and 8th grades. Standard errors are clustered at the discrete values of the forcing variable.  

     "Marginal effect (indirect FRD)" estimates, columns 2 and 6: Each cell reports the LATE estimates using the 

"indirect FRD" method described in detail in the text which explicitly models the dynamic nature of treatment 

assignment up through 8th grade. Each of the five terms in equation 6 is estimated using the multi-site FRD methods 

described for columns 1 and 5, and then plugged into equation 6. Standard errors are calculated using the delta 

method. To obtain the complete covariance matrix, the constituent terms are estimated simultaneously using the 

"stacked equation" approach described in the text.  

     Columns 3 and 7 report outcome variable means (standard deviations) for the estimation sample. 

* indicates p<0.05, ** p<0.01 
 


