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HIGHLIGHTS 

• A teacher’s value-added score in one year is partially but not fully predictive of her performance in 
the next.  
 

• Value-added is unstable because true teacher performance varies and because value-added 
measures are subject to error. 

 
• Two years of data do a meaningfully better job at predicting value added than just one.  
 
• A teacher’s value added in one subject is only partially predictive of her value added in another, 

and a teacher’s value added for one group of students is only partially predictive of her valued 
added for others. 

 
• The variation of a teacher’s value added across time, subject, and student population depends in 

part on the model with which it is measured and the source of the data that is used. 
 
• Year-to-year instability suggests caution when using value-added measures to make decisions for 

which there are no mechanisms for re-evaluation and no other sources of information. 

INTRODUCTION 

Value-added models measure teacher performance by the test score gains of their students, adjusted 
for a variety of factors such as the performance of students when they enter the class.  The measures 
are based on desired student outcomes such as math and reading scores, but they have a number of 
potential drawbacks. One of them is the inconsistency in estimates for the same teacher when value 
added is measured in a different year, or for different subjects, or for different groups of students.   
 
Some of the differences in value added from year to year result from true differences in a teacher’s 
performance.  Differences can also arise from classroom peer effects; the students themselves 
contribute to the quality of classroom life, and this contribution changes from year to year. Other 
differences come from the tests on which the value-added measures are based; because test scores 
are not perfectly accurate measures of student knowledge, it follows that they are not perfectly 
accurate gauges of teacher performance.    
 
In this brief, we describe how value-added measures for individual teachers vary across time, subject, 
and student populations.  We discuss how additional research could help educators use these 
measures more effectively, and we pose new questions, the answers to which depend not on 
empirical investigation but on human judgment.  Finally, we consider how the current body of 
knowledge, and the gaps in that knowledge, can guide decisions about how to use value-added 
measures in evaluations of teacher effectiveness. 
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WHAT IS THE CURRENT STATE OF KNOWLEDGE ON THIS ISSUE?  

Stability across time 

Is a teacher with a high value-added estimate in one year likely to have a high estimate the next?  If 
some teachers are better than others at helping students improve their performance on standardized 
tests, we would expect the answer to be “yes.”  But we also know that teachers are better at their 
jobs in some years than in others, so we would not expect their value added from one year to the next 
to be exactly the same.  That is, part of a teacher’s influence on students persists over time, and part 
of it varies.  It may vary for a range of reasons. Professional development might lead to improvement, 
or family responsibilities or school reforms might cause distractions in one year but not in another.   
 
Instability is not necessarily a bad thing; if a school is engaging in substantial change, one might expect 
teacher performance to change as well. In addition, value-added measures are subject to error 
because of a number of factors, such as whether the students have good or bad days when taking the 
test. The smaller the number of test scores used to create value-added measures, the more important 
students’ idiosyncratic performance is likely to be. So, we can think of value-added estimates as 
measuring three components: (1) true teaching effectiveness that persists across years; (2) true 
effectiveness that varies from year to year; and (3) measurement error. The relationship between a 
teacher's value added in one year and her value added in another year combines all three of these 
factors. 
 
One statistic that describes the year-to-year persistence in value-added estimates is the correlation 
coefficient, a measure of the linear relationship between two variables. The correlation coefficient is 
1.0 if a teacher’s value-added measure in one year is perfectly predictive of her score in the following 
year and zero if her score one year tells us nothing about how she will fare the next. A study of 
elementary school teachers found correlations from one year to the next of 0.6 to 0.8 for math and 
0.5 to 0.7 for reading.1 Other studies have found lower correlations, ranging from 0.2 to 0.6, 
depending on location, school level, and the specifications of the value-added model.2 These 
estimates are similar to the year-to-year performance correlations found for other occupations, 
including college professors, athletes, and workers in insurance sales.3 Overall, a teacher’s value-
added estimate in one year provides information about his or her value added in the following year, 
but it is not perfectly predictive. 
 
While one year of data does only a modest job of predicting teachers’ future value added, averaging 
the value-added measures across more than one year makes predictions more accurate.  Using the 
same data and model specification, one study found a correlation of 0.4 comparing one year of data 
to the next and a correlation of 0.6 using two years of data.4 In other words, in this study, two years of 
data does a meaningfully better job at predicting value added than does just one.  It is not as clear 
from the literature whether more than two years of data is helpful.  The one available study found 
that the correlation of two years of value-added data to future value-added data was significantly 
higher than one year, but that additional years of data (up to six) added only a little more predictive 
power.5 
 
Thought of in another way, teachers who have a high value-added estimate in one year are likely to 
have a high value-added estimate in the next, but some teachers with high value-added scores in one 
year have quite low scores in the next.  Table 1 presents a transition matrix that displays the value-
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added rankings of one sample of teachers over two years.6  Teachers are ranked and grouped into 
quintiles based on their value-added score in each year.  Half of teachers in the top fifth in the first 
year remained there, while 8 percent dropped all the way to the bottom fifth.  We also see that 43 
percent of teachers who had value-added estimates in the bottom quintile in one year remained there 
the next.  If there were no relationship between years, we would expect only 20 percent of teachers 
to be in this group since they would be evenly divided between the five quintiles.7 The table shows 
some stability in the value-added measures as most teachers either remain in the same quintile from 
one year to the next or move just one quintile up or down. 
 

Stability across subjects 

Teachers may teach multiple subjects over the course of a year, and they might be better at teaching 
one subject than another.  For example, in elementary school, some teachers might be more effective 
teaching multiplication than reading.  If a teacher who is very good at teaching one topic is also very 
good at teaching another—if her value-added measures are similar across topics—we might be 
comfortable using value-added measures based on a subset of student outcomes, for example, just 
math or just reading.  However, we might be less comfortable using a single measure of student 
outcomes if the value-added estimates varied a lot across topics.  If it did, we would want to measure 
teacher effectiveness in each subject that we care about.   
 
To assess the consistency of teacher effectiveness across subjects, we can compare a teacher’s value 
added in one subject to her value added in another.  The consistency of these measures across 
subjects, similar to consistency over time, combines both true differences in effectiveness and 
measurement error.  That is, one reason a teacher’s value-added estimates are not perfectly 
correlated across subjects is that both the estimates are measured with error.  Another reason is true 
differences in contributions to student learning. 
 
Studies that have looked at teachers’ consistency across reading and math have found correlation 
coefficients in the range of 0.2 to 0.6—similar to the correlations for the year-to-year comparisons.8 
To help make these findings clearer, we created a matrix based on the data from one of these 
studies.9  The matrix in Table 2 shows rankings of teachers on both their reading and math value-
added scores. We see that 46 percent of teachers who ranked in the bottom fifth in math also ranked 
in the bottom fifth for reading. Similarly, 46 percent of teachers who ranked in the top fifth for math 
also ranked in the top fifth for reading (compared with only four percent in the bottom fifth).  The 

Table 1: Stability of Teacher Value-Added Across Time (Percent of Teachers by Row) 

 

Ranking in year 2 
(Quintiles) 

Ranking in year 1 
(Quintiles) Q1 (Bottom) Q2 Q3 Q4 Q5 (Top) 
Q1 (Bottom) 43% 29% 14% 10% 4% 
Q2 26% 21% 25% 18% 9% 
Q3 12% 21% 28% 25% 15% 
Q4 10% 19% 19% 28% 23% 
Q5 (Top) 8% 11% 11% 19% 50% 
Notes: Total teachers = 941.  Source: Koedel & Betts (2007) 
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matrix suggests that, on average, teachers who are effective in math are also effective in reading, 
although some teachers are better at one than the other. 
 
Teachers may differ in their value added not only across subject areas but within subject areas.  Many 
standardized exams are composed of tests within tests. For example, the math section of the Stanford 
Achievement Test contains one subtest on procedures and one on problem-solving. Two studies have 
examined the consistency of value-added estimates based on these subtests, and one found 
correlations within the range of 0.5 to 0.7, while the other found correlations within the range of 0.0 
to 0.4.10  We have seen that the range in correlations across years and between subjects is due largely 
to differences in the methods for estimating value added. But in the second study, which looks within 
subjects, the lower correlations come from differences in data sources and differences across the 
subtests of the Stanford Achievement Test.11   
 

Stability across student populations 

The final type of consistency that we address is that which crosses student populations.  Despite the 
great variation among student groups – demographic, academic, and otherwise – few studies have 
examined the extent to which teachers are more effective with one group of students than with 
another.  Understanding these differences helps tell us whether a teacher who is effective with one 
group is likely to be effective with another. It also tells us how important it is to calculate value-added 
measures by student sub-group. 
 
Two studies have compared teachers’ value added with high-achieving students to the same teachers’ 
value added with lower-achieving students. Both studies find that teachers who are better with one 
group are, in most cases, also better with the other group.  The first study calculates two estimates: 
one based on the test scores of the teachers’ high-performing students and the other based on the 
scores of their low-performing students.12 While the samples used in the analyses are small, the 
authors find a correlation between the estimates of 0.4. As with the cases discussed above, the 
differences could come from variations in teachers’ true value-added across student groups or from 
measurement error enhanced by the small sample size.  The second study uses a different approach 
to ask a similar question. It finds that approximately 10 percent of the variance in teachers’ value-
added estimates can be attributed to the interaction between teachers and individual students, 
indicating substantial similarity in teacher effects between groups.13  

Table 2: Stability of Teacher Value-Added Across Subjects (Percent of Teachers by Row) 

 

Ranking in reading 
(Quintiles) 

 Ranking in math 
(Quintiles) Q1 (Bottom) Q2 Q3 Q4 Q5 (Top) Total 
Q1 (Bottom) 46.4% 27.3% 14.1% 8.7% 3.6% 704 
Q2 23.2% 28.0% 22.3% 17.4% 9.2% 622 
Q3 16.4% 24.5% 22.8% 20.9% 15.5% 580 
Q4 8.3% 17.5% 24.7% 28.1% 21.4% 612 
Q5 (Top) 4.1% 9.5% 16.1% 24.8% 45.5% 589 
Total 641 671 616 608 571 3,107 
Source: Loeb, Kalogrides, & Béteille (forthcoming). 
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Another study conducted a similar comparison of teachers’ value added with English language 
learners and English-proficient students.14 The authors found a correlation between teachers’ value-
added measures with the two groups of 0.4 to 0.6 for math and 0.3 to 0.4 for reading.  For 
comparison, and to distinguish measurement error from true differences in teacher effectiveness, the 
authors ran similar correlations with randomly separated groups of students. They found correlations 
of 0.7 for math and 0.6 for reading -- evidence that teachers’ value added for English learners is similar 
to their value added for students who already speak English, though again, they found that some 
teachers are somewhat better with one group than with the other.   
 
Table 3 provides a matrix similar to those described above. It shows that 50 percent of teachers in the 
bottom fifth in value added for math with English-proficient students are also in the bottom fifth with 
English learners. That compares to less than four percent of teachers who are in the top fifth with 
English learners.15  Similarly, 59 percent of the teachers in the top fifth in value added for math with 
English-proficient students are also in the top fifth in valued added with English learners; less than 
four percent are in the bottom fifth. Thus, the relationship between teachers’ value-added measures 
for these student groups is at least as strong as the relationship between value-added measures 
across years and subject areas.   
 

WHAT MORE NEEDS TO BE KNOWN ON THIS ISSUE? 

We have summarized the research on how well value-added measures hold up across years, subject 
areas, and student populations, but the evidence is based on a relatively small number of studies. 
Future research could better separate measurement error from true differences; more systematically 
compare estimates across model specifications; identify clear dimensions of time, topic, and student 
populations; and provide evidence on the sources of instability. 
 
Again, we see changes in teachers’ value-added estimates partly because the measurements are 
imprecise.  While numerous papers have highlighted this imprecision, most studies of instability have 
not systematically considered the role of measurement error in estimates aside from the type that is 
caused by sampling error.  Measurement error can come from many sources including errors in the 

Table 3: Stability of Teacher Value-Added Between English Learners and Others (Math) 

  Ranking for Non-English Learners   

 
(Quintiles)   

Ranking for 
English Learners Q1 

(Bottom) Q2 Q3 Q4 Q5 (Top) Total 
(Quintiles) 
Q1 (Bottom) 49.90% 25.10% 14.80% 7.10% 3.70% 467 
Q2 22.70% 32.40% 22.90% 14.10% 5.40% 480 
Q3 15.10% 23.10% 27.50% 20.60% 11.80% 484 
Q4 8.60% 15.10% 24.60% 30.20% 19.90% 480 
Q5 (Top) 3.70% 4.40% 10.20% 28.00% 59.20% 475 
Total 409 525 541 504 407 2,386 

Source: Loeb, Soland, and Fox (2012) 
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initial tests; the fact that many value-added estimates are based on small samples of students; errors 
in the data systems such as incorrect student teacher matches; effects of differential summer 
learning; and multiple support teachers working with same students 
 
We also recommend further research on the differences that exist when value added is measured 
across datasets and model specifications.16 With further study, researchers could clarify the role 
played by the model specifications and datasets in instability, and they could compare stability across 
a set of specifications. Then they could repeat the analysis across a range of datasets. 
 
Our understanding of value-added consistency could also benefit from the examination of more 
subject areas and more student groups. We compared math to reading, but we could also consider 
outcomes in writing, science, social studies, and other topics. Across student groups, we could 
consider achievement levels and behavioral tendencies, as well as background characteristics such as 
gender, race/ethnicity, and family income.    
 
Finally, further research could help uncover the causes of the inconsistency in value-added measures. 
To what degree are year-to-year changes due to differences in teacher effectiveness that schools can 
actually control? To what extent do factors outside the classroom affect teacher performance?  To 
what extent are teachers handicapped simply because they aren’t aware of the resources available to 
help students with different needs? When schools understand the causes of inconsistency in value-
added measures, they not only learn about the appropriate use of these measures, they also learn 
how they can best help their teachers improve. 

WHAT CAN’T BE RESOLVED BY EMPIRICAL EVIDENCE ON THIS ISSUE? 

It is clear from the research so far that value-added measures will never be completely stable across 
time, topics, or student groups, nor would we necessarily want them to be because true teacher 
effectiveness likely varies across these dimensions. Given these general findings, there are a number 
of questions that do not depend on empirical evidence. They include choices about the number of 
years of data to combine, the subject areas or topics to measure, and the student groups among 
which to distinguish.    
 
As described above, there are substantial yearly differences in teacher value-added scores.  Districts 
can learn more about future value added by looking at more years of initial value added.17  However, 
while using additional years leads to more stability, it also restricts the sample of students for whom 
these measures are available because teachers have to teach for multiple years to have multiple years 
of data.  Deciding what level of instability is acceptable is a decision for practitioners, not researchers. 
 
While instability across subject areas is perhaps not as great as instability across years, it is still 
substantial. It matters a lot which tests form the basis of the value-added measures.  Do they measure 
math or reading?  Do they measure factual knowledge or reasoning skills?  Researchers can help 
develop more reliable tests, but the choice of subject areas and the tradeoffs across types of 
measures are matters of judgment. Similarly, considering groups of students separately increases 
instability, but if there are groups in which a district has a particular interest, it might be worth the 
cost in stability for the benefit of targeting this group. 
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More generally, while research can evaluate the effectiveness of policies that use value-added 
measures, research alone can never determine the optimal approach for a given district or school.  

PRACTICAL IMPLICATIONS 

How does this issue impact district decision making? 

Year-to-year instability calls for caution when using value-added measures to make decisions for 
which there are no mechanisms for re-evaluation and no other sources of information.   Similarly, the 
gain in stability from using multiple years of data points to benefits of using multiple years of data (at 
least two).  However, even with multiple years of data, the instability can be consequential, a problem 
that points to supplementing value-added measures with other information 
 
The instability across subjects also has important implications.  First, it matters what is on the test. It 
should cover the skills and knowledge that are valued.  Topic inconsistency can also have implications 
for teacher assignment and development.  Also, knowing how teachers perform on different outcome 
measures, educational leaders can more carefully target professional development. 
 
Finally, the consistency across student groups can affect practical decisions.  By knowing how teachers 
perform on different outcome measures, education leaders can better target professional 
development to teachers’ needs and can better target teachers to classes or subject areas for which 
they are effective.  If teacher effectiveness varies a lot across subjects, leaders might make more 
careful distinctions among teaching jobs so teachers are teaching the subjects at which they are best.  
Moreover, if researchers can identify, in particular, why some teachers are more effective with  
underserved populations, school reform efforts might greatly benefit.  
 
In summary, value-added measures vary for the same teacher from year to year, subject to subject, 
and student group to student group. Although the similarity across measures suggests they are useful 
tools for decision-making, the variation suggests the benefit of being able to update decisions when 
new information becomes available; if a teacher appears relatively ineffective in one year, it is worth 
seeing her measure in another year as well. Instability in value-added measures argues for using them 
in relatively low-stakes decisions that carry opportunities for reconsideration. 

ENDNOTES 
                                                      
 
1 The correlations are adjusted for sampling error, which is one part of the measurement error, see:  

Dan Goldhaber and Michael Hansen, "Is it just a bad class? Assessing the stability of measured teacher 
performance," (Paper for Center for Education Data and Research, 2010). 
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Daniel F. McCaffrey, Tim R. Sass, J. R. Lockwood, and Kata Mihaly, "The intertemporal variability of teacher 
effect estimates," Education Finance and Policy, 4 (2009): 572-606. doi: 10.1162/edfp.2009.4.4.572.  
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12 See: Daniel Aaronson , Lisa Barrow, William Sander (2007).  High-ability students are those that score in the 
top half of the distribution on the Test of Achievement and Proficiency (TAP), administered by the Chicago 
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