
Using Heteroskedastic Ordered Probit Models to Recover 
Moments of Continuous Test Score Distributions from 
Coarsened Data

Test score distributions of schools or demographic groups are often summarized by 

frequencies of students scoring in a small number of ordered proficiency categories. We show 

that heteroskedastic ordered probit (HETOP) models can be used to estimate means and 

standard deviations of multiple groups’ test score distributions from such data. Because the 

scale of HETOP estimates is indeterminate up to a linear transformation, we develop formulas 

for converting the HETOP parameter estimates and their standard errors to a scale in which 

the population distribution of scores is standardized. We demonstrate and evaluate this novel 

application of the HETOP model with a simulation study and using real test score data from 

two sources. We find that the HETOP model produces unbiased estimates of group means 

and standard deviations, except when group sample sizes are small. In such cases, we 

demonstrate that a “partially heteroskesdastic” ordered probit (PHOP) model can produce 

estimates with a smaller root mean squared error than the fully heteroskedastic model.

ABSTRACTAUTHORS

VERSION

June 2016

Suggested citation:  Reardon, S.F., Shear, B.R., Castellano, K.E., & Ho, A.D. (2016). Using Heteroskedastic
Ordered Probit Models to Recover Moments of Continuous Test Score Distributions from Coarsened
Data (CEPA Working Paper No.16-02). Retrieved from Stanford Center for Education Policy Analysis:
http://cepa.stanford.edu/wp16-02

CEPA Working Paper No. 16-02

Sean F. Reardon
Stanford University

Benjamin R. Shear
Stanford University

Katherine E.
Castellano
Educational Testing Service

Andrew D. Ho
Harvard Graduate School of 

Education



 
 

 

 

 

Using Heteroskedastic Ordered Probit Models  

to Recover Moments of Continuous Test Score Distributions from Coarsened Data 

 

Sean F. Reardon (Stanford University) 

Benjamin R. Shear (Stanford University) 

Katherine E. Castellano (Educational Testing Service) 

Andrew D. Ho (Harvard Graduate School of Education) 

 

 

DRAFT: June 2016 

Forthcoming, Journal of Educational and Behavioral Statistics 

 

 

 

 

 

Direct correspondence to Sean F. Reardon (sean.reardon@stanford.edu). This research was supported by 
grants from the Institute of Education Sciences (#R305D110018 and #R305B090016) and a grant from the 
Spencer Foundation (#201500058). The paper benefited from collaboration with Erin Fahle and 
thoughtful comments from J.R. Lockwood. We thank Demetra Kalogrides for excellent research 
assistance, and Richard Williams for his responsiveness and assistance regarding our inquires about his -
oglm- Stata package. Some of the data used in this paper were provided by the National Center for 
Education Statistics (NCES). The opinions expressed here are ours and do not represent views of NCES, 
the Institute of Education Sciences, the Spencer Foundation, or the U.S. Department of Education. 

mailto:sean.reardon@stanford.edu


 
 

Using Heteroskedastic Ordered Probit Models 

to Recover Moments of Continuous Test Score Distributions from Coarsened Data 

 

Abstract 

Test score distributions of schools or demographic groups are often summarized by frequencies 

of students scoring in a small number of ordered proficiency categories. We show that heteroskedastic 

ordered probit (HETOP) models can be used to estimate means and standard deviations of multiple 

groups’ test score distributions from such data. Because the scale of HETOP estimates is indeterminate up 

to a linear transformation, we develop formulas for converting the HETOP parameter estimates and their 

standard errors to a scale in which the population distribution of scores is standardized. We demonstrate 

and evaluate this novel application of the HETOP model with a simulation study and using real test score 

data from two sources. We find that the HETOP model produces unbiased estimates of group means and 

standard deviations, except when group sample sizes are small. In such cases, we demonstrate that a 

“partially heteroskesdastic” ordered probit (PHOP) model can produce estimates with a smaller root 

mean squared error than the fully heteroskedastic model. 
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Using Heteroskedastic Ordered Probit Models  

to Recover Moments of Continuous Test Score Distributions from Coarsened Data 

 

The widespread availability of aggregate student achievement data provides a potentially 

valuable resource for researchers and policymakers alike. Often, however, these data are only publicly 

available in “coarsened” form in which students are classified into one or more ordered “proficiency” 

categories (e.g., “Basic,” “Proficient,” “Advanced”). Although proficiency category data are clearly useful 

when proficiency status itself is of substantive interest, coarsened data pose challenges for the analyst 

when moments of the underlying test score distributions are of interest. Proficiency rates convey 

information about a single point in a cumulative test score distribution. This not only limits the 

information available to the analyst about the underlying test score distribution, but it also complicates 

inferences about relative changes in achievement levels in different population subgroups, a point 

illustrated by Ho (2008) and Holland (2002).  

For example, suppose one wants to compare the average test scores among multiple schools, but 

one knows only the proportion of students scoring in each of several ordered proficiency categories. If 

the underlying test score distributions have unequal variances among schools, then rankings of schools 

on the basis of the percentages scoring at or above a given proficiency category will depend on which 

threshold is chosen. Moreover, rankings of schools based on percentages above some threshold will not, 

in general, match rankings based on mean scores. The same problem holds if one wishes to compare 

average test scores among multiple student subgroups (such as racial/ethnic groups) or to compare 

average test scores in a given school over time. In each case, judgements about the relative magnitude of 

between-group differences and even the ordering of groups’ average performance will be dependent on 

what proficiency category threshold is used. These and other limitations posed by the coarsening of 

standardized test scores have been described extensively (Ho, 2008; Ho & Reardon, 2012; Holland, 2002; 
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Jacob, Goddard, & Kim, 2013; Jennings, 2011). 

With access to only coarsened test score data, therefore, comparisons of average performance 

among groups of students may be ambiguous. Unfortunately, most publicly available data on student 

performance on state standardized tests consists of coarsened test scores. Most states, for example, do 

not report school- or district-level test score means (and very few report standard deviations). The 

EDFacts Assessment Database (e.g., U.S. Department of Education, 2015), for example, provides test 

score data for every public school in the United States, but does not include means and standard 

deviations. Rather, it contains the counts of students (by school, grade, subject, and student subgroup) 

scoring in each of two to five state-defined performance levels, as required under the Elementary and 

Secondary Education Act (ESEA). While these data are a valuable resource for educators, policymakers, 

and researchers, their utility is severely hampered by the absence of test score means and standard 

deviations. 

In this paper, we describe an approach that allows the analyst to recover more complete 

information about continuous test score distributions when only coarsened test score data are available. 

To achieve this, we propose a novel application of the heteroskedastic ordered probit (HETOP) model 

(e.g., Alvarez & Brehm, 1995; Greene & Hensher, 2010; Keele & Park, 2006; Williams, 2009). As we 

describe, the HETOP model can be used to recover means and standard deviations of continuous test 

score distributions of multiple groups from coarsened data. These groups may be schools, districts, or 

demographic subgroups. Estimates of these group means and standard deviations can be used to 

estimate intraclass correlations (ICCs), between-group achievement gaps, and other theoretically 

interesting or policy-relevant statistics, just as if each group’s mean and standard deviation were provided 

directly. 

The methods we describe generalize prior work quantifying achievement gaps in an ordinal or 

nonparametric framework, both with continuous (Ho, 2009) and coarsened (Ho & Reardon, 2012; 
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Reardon & Ho, 2015) test scores. Although we describe the use of such models to recover moments of 

test score distributions from aggregate proficiency data, the methods are applicable to other educational 

testing contexts when only coarsened scores are reported, such as Advanced Placement (AP) or English 

language proficiency exams. Aggregate data on coarse ordered scales can also arise in college rankings, 

health research and practice scales, and income reporting. In all of these cases, our methods enable the 

estimation of group means and standard deviations from ordered data. 

The paper is organized into four main sections. In Section 1, we describe the statistical and 

conceptual framework for our application of the HETOP model. In Section 2, we use Monte Carlo 

simulations to evaluate recovery of the parameters of interest across a range of scenarios that might be 

encountered in practice. In Section 3, we use two real test score data sets, one from the National 

Assessment of Educational Progress (NAEP) and one from a State testing program, to evaluate the extent 

to which the key assumption of the HETOP model holds for real data. For these case studies, both 

student-level scale scores and coarsened proficiency counts are available, allowing us to evaluate the 

agreement between HETOP model estimates of means and standard deviations and estimates of the 

same parameters based on uncoarsened scale score data. Section 4 summarizes and discusses the results 

and offers recommendations for applying the methodology in practice. 

 

1 Background and Statistical Framework 

1.1 Canonical Application: Data, Assumptions, and Estimands 

In our context of interest—the reporting of large-scale educational test scores in proficiency 

categories—the data consist of frequencies of students scoring within each of 𝐾𝐾 ordered categories 

(often called performance levels) for 𝐺𝐺 groups. Groups might be defined by racial/ethnic categories, 

schools, school districts, or other relevant categories. Such data can be summarized in a 𝐺𝐺 ×  𝐾𝐾 matrix. 

Each cell in the matrix indicates the observed frequency of students from group 𝑔𝑔 = {1, … ,𝐺𝐺} scoring at 
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performance level 𝑘𝑘 = {1, … ,𝐾𝐾} of a test. The performance levels describe ordered degrees of student 

proficiency in a content area. In standard current state testing practice, a panel of content experts selects 

one to four cutscores that divide the score scale into performance levels through a standard setting 

procedure (e.g., Cizek, 2012).  

Let 𝑦𝑦 denote a continuous random variable (scaled test scores, in our example), with 𝜇𝜇𝑔𝑔 and 𝜎𝜎𝑔𝑔 

denoting the mean and standard deviation, respectively, of 𝑦𝑦 in group 𝑔𝑔. Although we make no specific 

distributional assumptions about the shape of the distributions of 𝑦𝑦 in each group, we do make the 

assumption that the distributions are “respectively normal” (Ho, 2009; Ho & Reardon, 2012). This means 

we assume there exists a continuous monotonic increasing function 𝑓𝑓 defined for all values of 𝑦𝑦, such 

that 𝑦𝑦∗ = 𝑓𝑓(𝑦𝑦) has a normal distribution within each group 𝑔𝑔: 

This does not require that the test score 𝑦𝑦 be normally distributed within each group, only that the metric 

of 𝑦𝑦 can be transformed so that this is true for the resulting transformed scores. Without loss of 

generality, we assume that 𝑓𝑓 is defined so that 𝑦𝑦∗ is standardized in the population, that is 𝐸𝐸[𝑦𝑦∗] = 0 and 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦∗) = 1. Hence we assume that there is a continuous scale for “academic achievement” (𝑦𝑦∗) for 

which all within group distributions are normal. Note that neither 𝑦𝑦 nor 𝑦𝑦∗ is assumed to be normally 

distributed in the combined population of all groups. We elaborate on the conceptual distinctions 

between these two metrics in Section 1.5 below. 

We are interested in the case where neither 𝑦𝑦 nor 𝑦𝑦∗ is observed. Instead, we observe a 

“coarsened” version of 𝑦𝑦. This coarsened version, denoted 𝑠𝑠 ∈ {1, … ,𝐾𝐾}, is determined by 𝐾𝐾 − 1 distinct 

ordered threshold values, 𝑐𝑐1, … , 𝑐𝑐𝐾𝐾−1, where 𝑐𝑐𝑘𝑘−1 < 𝑐𝑐𝑘𝑘 for all 𝑘𝑘: 

where we define 𝑐𝑐0 ≡ −∞ and 𝑐𝑐𝐾𝐾 ≡ +∞. Because 𝑓𝑓 is a monotonic increasing function, 𝑠𝑠 is also a 

 𝑦𝑦∗|(𝐺𝐺 = 𝑔𝑔)~𝑁𝑁(𝜇𝜇𝑔𝑔∗ ,𝜎𝜎𝑔𝑔∗
2) (1) 

 𝑠𝑠 ≡ 𝑘𝑘  iff  𝑐𝑐𝑘𝑘−1 < 𝑦𝑦 ≤ 𝑐𝑐𝑘𝑘 , (2a) 
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coarsened version of 𝑦𝑦∗: 

where 𝑐𝑐𝑘𝑘∗  = 𝑓𝑓(𝑐𝑐𝑘𝑘). Under our assumption of respective normality, the model-implied proportion of 

observations in category 𝑘𝑘 for group 𝑔𝑔 is therefore 

where Φ(•) is the standard normal cumulative distribution function. The aim is to estimate 𝜇𝜇𝑔𝑔∗  and 𝜎𝜎𝑔𝑔∗ for 

each group based on the observed frequencies of members of group 𝑔𝑔 in each of the 𝐾𝐾 ordered 

proficiency categories.  

Equation (3) is an instance of the heteroskedastic ordered probit (HETOP) model. Here we think 

of each student’s ordered proficiency category as the result of a draw from an underlying continuous 

(normal) distribution of test scores within a group. The HETOP model is an extension of the 

homoskedastic ordered probit model that allows for heteroskedasticity in the variances of the underlying 

continuous variable across groups. In the remainder of the paper, we refer to the ordered probit model in 

which all group variances are assumed equal as the homoskedastic ordered probit (HOMOP) model. The 

ordered probit model is sometimes referred to as an ordered choice model (Williams, 2009) or as a 

location-scale model (Cox, 1995; McCullagh, 1980). Most broadly, it is an instance of a generalized linear 

model that parameterizes the multinomial distribution of observations in each group as cumulative 

probabilities from a normal density function (Agresti, 2002). Use of a HETOP model allows us to relax the 

often unrealistic assumption that test scores are homoskedastic across groups and to obtain direct 

estimates of the within-group standard deviations. To our knowledge, the HETOP model has not been 

used for the recovery of means and standard deviations from the coarsened data of multiple groups.  

Our proposed application and interpretation of the HETOP model is analogous to the ordered 

 𝑠𝑠 ≡ 𝑘𝑘  iff  𝑐𝑐𝑘𝑘−1∗ < 𝑦𝑦∗ ≤ 𝑐𝑐𝑘𝑘∗ , (2b) 

 𝜋𝜋𝑔𝑔𝑔𝑔 = Φ�
𝜇𝜇𝑔𝑔∗ − 𝑐𝑐𝑘𝑘−1∗

𝜎𝜎𝑔𝑔∗
� − Φ�

𝜇𝜇𝑔𝑔∗ − 𝑐𝑐𝑘𝑘∗

𝜎𝜎𝑔𝑔∗
� = Pr�𝑐𝑐𝑘𝑘−1∗ < 𝑦𝑦𝑖𝑖𝑖𝑖∗ ≤ 𝑐𝑐𝑘𝑘∗� ≡ Pr�𝑐𝑐𝑘𝑘−1 < 𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑘𝑘�, (3) 
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regression model used in the analysis of receiver operating characteristic (ROC) curves, where the model 

can be interpreted as estimating the mean and standard deviation of unobserved (latent) normal 

distributions across multiple groups. Tosteson and Begg (1988) demonstrated that the HETOP model 

generalizes the binormal model for analyzing ROC curves comparing two groups (Dorfman & Alf, 1969) to 

scenarios with more than two groups. The binormal model has been used previously as a method to 

estimate the nonparametric V gap statistic between two groups when only coarsened proficiency data 

are available (Ho & Reardon, 2012; Reardon & Ho, 2015).1 The HETOP model also generalizes the 

maximum-likelihood (ML) based estimator of 𝑉𝑉 recommended by Ho and Reardon (2012). It effectively 

allows for simultaneous estimation of all pairwise 𝑉𝑉 gaps on a common metric for three or more groups. 

 

1.2 HETOP Model Estimation and Identification 

Let 𝐍𝐍 be an observed 𝐺𝐺 × 𝐾𝐾 matrix with elements 𝑛𝑛𝑔𝑔𝑔𝑔 containing the counts of observations in 

group 𝑔𝑔 for which 𝑠𝑠 = 𝑘𝑘; let 𝐏𝐏 = [𝑝𝑝1, … ,𝑝𝑝𝐺𝐺] be the 1 × 𝐺𝐺 vector of the groups’ proportions in the 

population; and let 𝐧𝐧 = [𝑛𝑛1, … , 𝑛𝑛𝐺𝐺] be the 1 × 𝐺𝐺 vector of the observed sample sizes in each group, with 

𝑁𝑁 = ∑ 𝑛𝑛𝑔𝑔𝑔𝑔 .2 We would like to estimate the vectors 𝐌𝐌∗ = [𝜇𝜇1∗, … , 𝜇𝜇𝐺𝐺∗ ]𝑡𝑡, 𝚺𝚺∗ = [𝜎𝜎1∗, … ,𝜎𝜎𝐺𝐺∗]𝑡𝑡 and  𝐂𝐂∗ =

[−∞, 𝑐𝑐1∗, … , 𝑐𝑐𝐾𝐾−1∗ , +∞]. In practice, it is preferable to estimate 𝚪𝚪∗ = [𝛾𝛾1∗, 𝛾𝛾2∗, … , 𝛾𝛾𝐺𝐺∗ ]𝑡𝑡, where 𝛾𝛾𝑔𝑔∗ = ln�𝜎𝜎𝑔𝑔∗�. 

This ensures that the estimates of 𝜎𝜎𝑔𝑔∗ will all be positive. Following estimation of 𝚪𝚪∗, we have 

𝚺𝚺�∗ = �𝑒𝑒𝛾𝛾�1
∗ , … , 𝑒𝑒𝛾𝛾�𝐺𝐺

∗
�
𝑡𝑡
. Given 𝐌𝐌∗, 𝚪𝚪∗, and 𝐂𝐂∗, and under the assumption of conditional independence of 

scores within groups, the log likelihood of drawing a sample with observed counts 𝐍𝐍 is: 

                                                           
1 The V statistic is a transformation-invariant metric quantifying the nonoverlap between two distributions and is 
equal to a Cohen’s d standardized mean difference when both distributions are normal (Ho, 2009). 
2 Note that we do not require that 𝑝𝑝𝑔𝑔 = 𝑛𝑛𝑔𝑔/𝑁𝑁; that is, the size of the sample in each group need not be 
proportional to the group’s share of the population. 
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where 𝐴𝐴 = ln �
∏ 𝑛𝑛𝑔𝑔!𝐺𝐺
𝑔𝑔=1

∏ ∏ 𝑛𝑛𝑔𝑔𝑔𝑔!𝐾𝐾
𝑘𝑘=1

𝐺𝐺
𝑔𝑔=1

� is a constant based on the observed counts in 𝐍𝐍. 

Without constraints on the parameters, the scale of 𝐌𝐌∗, 𝚪𝚪∗, and 𝐂𝐂∗ is indeterminate up to a 

linear transformation. The constraints ∑ 𝑝𝑝𝑔𝑔𝜇̂𝜇𝑔𝑔∗𝑔𝑔 = 0 and  ∑ 𝑝𝑝𝑔𝑔𝜇̂𝜇𝑔𝑔∗2𝑔𝑔 + ∑ 𝑝𝑝𝑔𝑔𝑒𝑒2𝛾𝛾�𝑔𝑔
∗

𝑔𝑔 = 1 together imply that 

𝑦𝑦∗ has mean 0 and variance 1, as desired. However, these non-linear constraints are not easily 

implemented in standard software. Instead, it is easier to fit the model subject to two linear constraints 

on the parameters. As a default we recommend the constraints 

where we use a superscript prime symbol to denote the metric defined by the linear constraints.3 

To estimate a homoskedastic ordered probit (HOMOP) model, we impose the additional 

                                                           
3 These specific constraints are not essential; other constraints will identify the parameters, and may be preferable 
in some settings. The default in many software programs is to define some group 𝑟𝑟 as the “reference group” and to 
constrain 𝜇𝜇𝑟𝑟′ = 0 and 𝛾𝛾𝑟𝑟′ = 0. These constraints imply that the reference group has a mean of 0 and a standard 
deviation of 1, with the means and standard deviations of the other groups are then interpreted relative to group 𝑟𝑟. 
This is a reasonable default where there is a substantively important reference group and standardization is not 
needed. It is not the obvious default when there is no substantively important reference group and we would like to 
estimate each group’s mean and standard deviation relative to the overall population distribution. 

 

𝐿𝐿 = ln[𝑃𝑃(𝐍𝐍|𝐌𝐌∗,𝚪𝚪∗,𝐂𝐂∗)] = ��ln�𝑛𝑛𝑔𝑔!� + ��𝑛𝑛𝑔𝑔𝑔𝑔 ln�𝜋𝜋𝑔𝑔𝑔𝑔� − ln�𝑛𝑛𝑔𝑔𝑔𝑔!��
𝐾𝐾

𝑘𝑘=1

�
𝐺𝐺

𝑔𝑔=1

= 𝐴𝐴 + ��𝑛𝑛𝑔𝑔𝑔𝑔 ln�𝜋𝜋𝑔𝑔𝑔𝑔�
𝐾𝐾

𝑘𝑘=1

𝐺𝐺

𝑔𝑔=1

= 𝐴𝐴 + ��𝑛𝑛𝑔𝑔𝑔𝑔 ln �Φ�
𝜇𝜇𝑔𝑔∗ − 𝑐𝑐𝑘𝑘−1∗

𝑒𝑒𝛾𝛾𝑔𝑔
∗ � − Φ�

𝜇𝜇𝑔𝑔∗ − 𝑐𝑐𝑘𝑘∗

𝑒𝑒𝛾𝛾𝑔𝑔
∗ ��

𝐾𝐾

𝑘𝑘=1

,
𝐺𝐺

𝑔𝑔=1

 

(4) 

 

𝐏𝐏𝐌𝐌� ′ ≡ �𝑝𝑝𝑔𝑔𝜇̂𝜇𝑔𝑔′
𝐺𝐺

𝑔𝑔=1

= 0 

𝐏𝐏𝚪𝚪� ′ ≡ �𝑝𝑝𝑔𝑔𝛾𝛾�𝑔𝑔′
𝐺𝐺

𝑔𝑔=1

= 0, 

(5) 
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constraint that 𝛾𝛾�1′ = 𝛾𝛾�2′ = ⋯ = 𝛾𝛾�𝐺𝐺′  before maximizing Equation (4),4 so that all groups have identical 

standard deviations. In some cases, as we discuss below, we may wish to fit a partially heteroskedastic 

ordered probit (PHOP) model, in which we constrain some subset of the groups to have identical 

standard deviations, but we allow the others to vary freely. This is achieved by adding to (5) the 

constraint that the relevant elements of 𝚪𝚪� ′ are equal to one another. 

 We can then maximize Equation (4) subject to the constraints, resulting in estimates 𝐌𝐌�′, 𝚪𝚪� ′, and 

𝐂𝐂�′ from which we obtain 𝚺𝚺�′ = �𝑒𝑒𝛾𝛾�1
′ , 𝑒𝑒𝛾𝛾�2′ , … , 𝑒𝑒𝛾𝛾�𝐺𝐺

′
�
𝑡𝑡
. Note that the constraints in (5) (or any set of linear 

constraints) do not, in general, yield estimates that satisfy the requirement that ∑ 𝑝𝑝𝑔𝑔𝜇̂𝜇𝑔𝑔′2𝑔𝑔 + ∑ 𝑝𝑝𝑔𝑔𝑒𝑒2𝛾𝛾�𝑔𝑔
′

𝑔𝑔 =

1. We can, however, standardize the estimates to recover estimates of 𝐌𝐌∗, 𝚺𝚺∗, and 𝐂𝐂∗, using: 

where 𝜎𝜎�′ is an estimate of the population standard deviation in the metric defined by the constraints (the 

“prime” metric). We show in Appendix A that 𝜎𝜎�′ can be estimated as: 

where 

and 

                                                           
4 If we are using the default constraint of 𝐏𝐏𝚪𝚪�′ = 0, then this together with the additional homoskedasticity 
constraint implies the single combined constraint 𝛾𝛾�1′ = 𝛾𝛾�2′ = ⋯ = 𝛾𝛾�𝐺𝐺′ = 0. 

 

𝐌𝐌� ∗ =
1
𝜎𝜎�′
𝐌𝐌� ′ 

𝚺𝚺�∗ =
1
𝜎𝜎�′
𝚺𝚺�′ 

𝐂𝐂�∗ =
1
𝜎𝜎�′
𝐂𝐂�′ 

(6) 

 𝜎𝜎�′ = �𝜎𝜎�𝐵𝐵2 + 𝜎𝜎�𝑊𝑊2  (7) 

 𝜎𝜎�𝑊𝑊′2 =
𝐏𝐏𝚺𝚺�′∘2

1 + 2𝜔𝜔𝑔𝑔2����
�  (8) 
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In these equations 𝜔𝜔𝑔𝑔2����
�  is the estimated average sampling variance of the 𝛾𝛾�𝑔𝑔′ ’s and the “(𝐀𝐀)∘𝑏𝑏” notation 

indicates the matrix whose elements are the corresponding elements of matrix 𝐀𝐀 raised to the power 𝑏𝑏. 

Appendix A shows that for the HETOP model we can use the approximation 𝜔𝜔𝑔𝑔2����
� ≈ (2𝑛𝑛�)−1, where 𝑛𝑛� is the 

harmonic mean of 𝑛𝑛𝑔𝑔 − 1: 𝑛𝑛� = �1
𝐺𝐺
∑ 1

𝑛𝑛𝑔𝑔−1𝑔𝑔 �
−1

. For the HOMOP and PHOP models, 𝜔𝜔𝑔𝑔2����
�  is approximated 

slightly differently (see Appendix A). 

As we noted above, the model can be estimated with different constraints than those in Equation 

(5), as long as two independent constraints are used. However, if an alternate set of constraints are used 

it is necessary to transform the resulting estimates to the metric defined by Equation (5) before 

standardizing using the procedure in Equation (6); we describe the necessary transformation in Online 

Appendix A. Absent problems maximizing the likelihood function, such as those discussed in Section 1.6, 

these transformation and standardization procedures will yield the same estimates of 𝐌𝐌∗ and 𝚺𝚺∗ 

regardless of the linear constraints imposed to identify the model. 

Maximum likelihood estimation of the HETOP, HOMOP, and PHOP models can be conducted in a 

number of widely available statistical packages; see Greene and Hensher (2010, p. 179) for a fairly recent 

list. For all simulations and analyses described in this paper, we carry out the maximum likelihood 

estimation of (5) using a modification of the –oglm– (“ordinal generalized linear models”) routine 

(Williams, 2010) written for Stata (StataCorp, 2013).5 

 

                                                           
5 The modified program is contained in a Stata ado file freely available to readers from the authors upon request. 

 𝜎𝜎�𝐵𝐵′2 = 𝐏𝐏𝐌𝐌� ′∘2 +
[𝐧𝐧∘−1 ∘ (𝐏𝐏∘2 − 𝐏𝐏)]𝚺𝚺�′∘2

1 + 2𝜔𝜔𝑔𝑔2����
� . (9) 
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1.3 Additional Estimands of Interest 

Once we have obtained 𝐌𝐌� ∗ and 𝚺𝚺�∗, estimation of summary statistics like between-group gaps 

and ICCs is straightforward. First, the achievement gap between any two groups 𝑔𝑔 and ℎ can be 

computed as the standardized mean difference in 𝑦𝑦∗ between the groups: 

Note that, under the assumption of respective normality, 𝐷𝐷𝑔𝑔ℎ is equal to 𝑉𝑉, the gap statistic invariant to 

monotonic scale transformations (Ho & Reardon, 2012). 

Second, the ICC (the between-group share of total test score variance) is simply one minus the 

estimated within-group variance of 𝑦𝑦∗, because the total variance of 𝑦𝑦∗ is 1: 

 

1.4 Computation of Standard Errors 

Once we have standardized the estimated group means and standard deviations using Equation 

(6), we can also compute their standard errors. Because the elements of 𝐌𝐌� ∗ and 𝚺𝚺�∗ are the products of 

error-prone estimates of 𝜎𝜎′ and error-prone elements of 𝐌𝐌′ and 𝚺𝚺′, the standard errors of the elements 

of 𝐌𝐌� ∗ and 𝚺𝚺�∗ will depend on the variances and covariances of 𝜎𝜎�′ and the elements of 𝐌𝐌� ′ and 𝚺𝚺�′. In 

Appendix B we derive formulas to estimate 𝐕𝐕∗ and 𝐖𝐖∗, the sampling variance-covariance matrices of 𝐌𝐌� ∗ 

and 𝚺𝚺�∗, respectively, when the model is fit with the constraints 𝐏𝐏𝐌𝐌� ′ = 0 and 𝐏𝐏𝚪𝚪� ′ = 0. These derivations 

take into account the sampling error in 𝜎𝜎�′. 

The standard errors of the gaps described in Equation (10) can be computed from 𝐌𝐌� ∗, 𝚺𝚺�∗, 𝐕𝐕�∗, 

and 𝐖𝐖� ∗, as described in Appendix D. The formulas there are generalizations of the formulas used in 

 𝐷𝐷𝑔𝑔ℎ =
𝜇̂𝜇𝑔𝑔∗ − 𝜇̂𝜇ℎ∗

�1
2 �𝜎𝜎�𝑔𝑔

∗2 + 𝜎𝜎�ℎ∗
2� 

 (10) 

 ICC� = 1 − 𝜎𝜎�𝑊𝑊∗2 = 1 − �
𝐏𝐏�𝚺𝚺�∗�∘2

1 + 2𝜔𝜔𝑔𝑔2����
��. (11) 
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Reardon and Ho (2015).  

The standard error of the ICC is relatively straightforward to compute once we have 𝐖𝐖� ∗. Given 

Equation (11), the variance of the ICC estimator will be 

Substituting 𝚺𝚺�∗ and 𝐖𝐖� ∗ and the appropriate approximation of 𝜔𝜔𝑔𝑔2����
�   (see Appendix A) into Equation (12) 

yields an estimate of the variance of the ICC estimator. 

 

1.5 A Note on Interpreting the Estimated Parameters 

  There are two different test score scales relevant to the interpretation of estimated parameters. 

The first is the continuous scale in which test scores are constructed (i.e., the scale score metric of a test 

as constructed by a test developer). We denote the scores measured in this metric (the original test 

metric) with the variable 𝑦𝑦 and denote estimates based on these scores as 𝜇̂𝜇𝑘𝑘 and 𝜎𝜎�𝑘𝑘.  The second is the 

scale of the standardized estimates produced by the HETOP model. We denote the scores measured in 

this metric with the variable 𝑦𝑦∗ and denote estimates in this metric with a superscript “star” (e.g., 𝜇̂𝜇𝑘𝑘∗  and 

𝜎𝜎�𝑘𝑘∗). The estimates in this metric are interpreted relative to a population mean and standard deviation of 

0 and 1 respectively. Scores in the prime metric described in Section 1.2 are simply a linear 

transformation of 𝑦𝑦∗ used in the process of model estimation and are not relevant to the final 

interpretation of 𝑦𝑦∗. 

 If the function 𝑓𝑓 that transforms 𝑦𝑦 into 𝑦𝑦∗ is non-linear, then the group means and standard 

deviations in the 𝑦𝑦∗ metric will not be linearly related to those in the original 𝑦𝑦 metric. In other words, the 

target parameters of our application of the HETOP model are not the test score means and standard 

deviations in the (potentially observed) test score metric of 𝑦𝑦. Rather, they are the means and standard 

 𝑉𝑉𝑉𝑉𝑉𝑉�𝐼𝐼𝐼𝐼𝐼𝐼� � ≈ �
1

1 + 2𝜔𝜔𝑔𝑔2����
��

2

𝑉𝑉𝑉𝑉𝑉𝑉 �𝐏𝐏�𝚺𝚺�∗�∘2� ≈ 4�
1

1 + 2𝜔𝜔𝑔𝑔2����
��

2

𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺∗)]𝐖𝐖∗[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺∗)]𝐏𝐏𝑡𝑡. (12) 
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deviations in the continuous metric of 𝑦𝑦∗—the metric in which each group’s distribution is normal and in 

which the population distribution has mean 0 and standard deviation 1. The key assumption of the model 

is that such a metric exists. That is equivalent to saying that the group distributions of 𝑦𝑦 (if 𝑦𝑦 could be 

observed) are “respectively normal,” as defined above. 

 In some cases, these parameters may be unsatisfying. If, for example, we want to recover means 

and standard deviations in the reported metric of 𝑦𝑦 (e.g., if we want to recover group-specific mean SAT 

scores, expressed in the SAT score scale metric), we could do so if two conditions are met. First, we would 

need to know the threshold scores (in the original metric) used to coarsen the data (that is, we would 

need to know 𝑐𝑐1, … , 𝑐𝑐𝐾𝐾−1, where 𝐾𝐾 ≥ 3). Second, we would have to assume that the group-specific 

distributions of scores are normally distributed in the original metric (rather than assuming only that they 

could be normalized by some common transformation 𝑓𝑓). If these two conditions are met, we could 

estimate the HETOP model using the frequency counts within each ordered category, as above, except 

that we would constrain the vector 𝐂𝐂 to have values equal to the known threshold scores (rather than 

imposing constraints on the vectors of estimated means and standard deviations). The vectors 𝐌𝐌�′ and 𝚺𝚺�′ 

would then be freely estimated and would be interpretable as group means and standard deviations in 

the original score metric 𝑦𝑦. From a practical standpoint, if the group distributions in the original metric 

are already normal (or nearly normal), the 𝑦𝑦 and 𝑦𝑦∗ estimates will differ only by a linear transformation 

(or a nearly linear transformation). While the scale of the means and standard deviations will thus differ, 

auxiliary statistics such as standardized mean differences or the estimated ICC will be unchanged (or 

nearly unchanged).   

 When it is reasonable to assume distributions of the original scores 𝑦𝑦 are normal within each 

group and it is desirable to obtain estimates in that metric, then constraining the thresholds to their 

known values may be preferable. Unlike physical properties like height or weight, however, it is not clear 

that there is any natural cardinal scale for cognitive or academic skill (Lord, 1980) or that the test design 
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principles necessary to support cardinality have been addressed for many common test score scales  

(Briggs, 2013). In many cases, then, the fixed intervals between established cutscores defined in the 

original scale score metric might have little theoretical justification or relevance, and may be 

unnecessarily restrictive. The 𝑦𝑦∗ metric provides a unique metric interpretable in standard deviation units 

for comparing test score distributions across groups. The 𝑦𝑦∗ metric also preserves the ordinal structure of 

the observed data, while remaining invariant to plausible monotonic transformations of the original test 

score scale (i.e., it does not rely on the cardinality of the original test score scale). We therefore use the 

parameters on the 𝑦𝑦∗ scale as targets for simulation and interpretation. 

 

1.6 Estimation Issues and the Partially Heteroskedastic Ordered Probit Model 

The HETOP model will be unidentified if there are groups in which all observations fall in the 

highest or lowest proficiency category. In this case, the ML estimates of these groups’ means will be ±∞. 

In such cases, the HETOP model does not have enough information to provide estimates. In other cases, 

heteroskedastic multinomial or ordered probit models may suffer from fragile identification (Freeman, 

Keele, Park, Salzman, & Weickert, 2015; Keane, 1992), meaning that although the model is formally 

identified, the likelihood function may be nearly flat over a range of the parameter space. This may result 

in a near-singular Hessian, failure of the estimation algorithm to converge, or convergence with very large 

standard errors. In addition, ML algorithms can sometimes indicate convergence even when the 

multinomial or ordinal probit model is formally unidentified, due to approximation errors in estimating 

the likelihood function (Horowitz, Sparmann, & Daganzo, 1982; Keane, 1992).  

In our simulations and in applying the HETOP model to real data, we found evidence of such 

fragile identification in some cases. This occurred when one or more groups had sparse data—for 

example, when the coarsened data showed all members of a group scoring in the same one or two 

ordered categories. This condition is unlikely to occur unless more than one of the following conditions 
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hold: the group has a relatively high or low mean, a small standard deviation, a small sample size, and/or 

the cutscores are narrowly or unevenly spaced. In such cases, the HETOP algorithm sometimes either 

failed to converge or converged and returned estimates with very large standard errors for particular 

groups’ parameter estimates (often many orders of magnitude larger than those for other, well-identified 

groups). In some cases, the algorithm would converge using one set of constraints but not another, or 

would converge with two different sets of constraints but result in differing estimates of 𝜇𝜇𝑔𝑔∗  and 𝜎𝜎𝑔𝑔∗, 

suggesting these parameters were at best tenuously identified and not to be trusted.6 

In such cases, one can drop sparsely populated groups from the model and fit the HETOP model 

only with groups with sufficient data to identify their parameters. One disadvantage of this is that the 

standardization procedure we describe will no longer include the full population of interest. An alternate 

solution is to fit a PHOP (or HOMOP) model instead of the HETOP model, imposing some constraints on 

the standard deviations of the groups with sparse data. For example, constraining all groups with small 

sample sizes, or with similar values of some covariate, to have the same standard deviation allows the 

model to use information from multiple groups to estimate a common standard deviation for those 

groups. As long as at least some of the constrained groups have sufficient data to identify the parameters, 

the fragile identification problem may be avoided. We describe simulation analyses of such a model in 

Section 2.3 below, where we find that the PHOP model often yields a smaller root mean squared error 

(RMSE) than the HETOP model, even when the groups’ true standard deviations are not identical.  

 

                                                           
6 Even in cases where all groups have sufficient data to identify the model parameters, small sample sizes may slow 
or impede convergence of the ML algorithm, because the likelihood function may be very flat over a wide range of 
the parameter space. In such cases, we have found that replacing the constraints 𝐏𝐏𝐌𝐌� ′ = 𝟎𝟎 and 𝐏𝐏𝚪𝚪�′ = 𝟎𝟎 with a 
reference group constraint (i.e., constrain 𝜇̂𝜇𝑟𝑟′ = 0 and 𝛾𝛾�𝑟𝑟′ = 0 where 𝑟𝑟 indicates a reference group) sometimes 
improved the speed of convergence. In such cases, convergence is improved when the reference group is one with a 
large sample size and a distribution of frequency counts that is similar to the population distribution. The speed of 
convergence can also be improved by providing the algorithm with feasible starting values, which can be obtained 
by using the two-group methods described in Ho & Reardon (2012) to separately estimate each group’s mean and 
standard deviation relative to that of the selected reference group. 
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2 Evaluating the Performance of the HETOP and PHOP Models Using Simulated Data 

We conducted a Monte Carlo simulation to evaluate the accuracy of our proposed use of the 

HETOP model (and our described standardization procedure) when the data generating procedure 

matches the model. The first simulation study uses a range of conditions selected to represent those 

likely to be encountered when analyzing coarsened proficiency data in practice. It builds upon prior 

simulation studies of HETOP models that sought to recover individual-level parameters rather than group 

parameters (e.g., Keele & Park, 2006). We focus directly on recovery of the means, standard deviations, 

and ICCs of the continuous 𝑦𝑦∗ variable after applying our proposed standardization procedure, including 

evaluation of bias, sampling variability and confidence interval coverage of the estimated standard errors. 

We also evaluate the performance of the partially heteroskedastic (PHOP) model as a potential way to 

overcome estimation problems caused by small sample sizes. 

 

2.1 HETOP Model Simulation Conditions and Procedure  

We simulated data from populations that differ in the degree to which the true means and 

standard deviations of test scores vary among groups. We characterize the variation in group means using 

the ICC (the proportion of total variance in test scores that lies between groups) and the variation in 

group standard deviations using the coefficient of variation (CV) of group variances (defined as 𝐶𝐶𝐶𝐶 =

𝑆𝑆𝐷𝐷(𝜎𝜎2)/𝐸𝐸[𝜎𝜎2]). We first created four populations, each defined by an ICC (0.05 or 0.20) and a CV (0.0 or 

0.3) and containing 100 groups. In each population, each of the 100 groups has one of 10 uniformly-

spaced true means and one of 10 uniformly-spaced true standard deviations (when CV=0, all groups have 

identical standard deviations), with the set of means and standard deviations defined so that the 

population has the desired ICC and CV, and an overall mean of 0 and total variance of 1. We selected the 

ICC and CV values to correspond roughly to the high and low ends of values reported in prior literature on 

test score variation (Hedberg & Hedges, 2014; Hedges & Hedberg, 2007) and the real test score data we 
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analyze later in this paper. 

In each of the four populations, we conducted 4 sets of simulations, each defined by groups of a 

different sample size (𝑛𝑛 = 25, 50, 100, 400). For each of the 16 resulting simulation scenarios defined by 

the ICC, CV, and group sample size, we generated random samples of size 𝑛𝑛 from each of the 100 groups. 

Each group’s sample was drawn from normal population distributions with means and standard 

deviations defined by the parameters for each of the 100 groups. We then coarsened the scores four 

different ways, each time using a different set of cut score locations (set at the 20th/50th/80th; 

5th/50th/95th; 5th/30th/55th; and 5th/ 25th/ 50th/ 75th/ 95th percentiles of the population test score 

distribution, and described as “mid,” “wide,” “skewed,” and “many” cutscores, respectively). The cutscore 

locations were chosen to be representative of a wide range of conditions found in empirical coarsened 

test score data (Reardon & Ho, 2015). Finally, we fit both the HETOP and HOMOP model to the coarsened 

data, and followed the procedures described above to obtain 𝐌𝐌� ∗, 𝚺𝚺�∗, the estimated ICC, and their 

standard errors. For each of the 64 scenarios, we repeated this process 1000 times. 

Although our primary goal is to assess the performance of the HETOP model, we also fit the 

HOMOP model to each simulated data set in order to compare the relative performance of the two 

models. Fitting the HOMOP and HETOP model to data generated from a population that is homoskedastic 

(CV=0.0) allows us to assess whether using the HETOP model when it is not needed leads to bias or 

inefficient estimation relative to the more appropriate HOMOP model. Likewise, fitting both models to 

data generated from a population that is heteroskedastic (CV=0.3) allows us to assess whether and how 

much the use of the HETOP model improves estimation relative to the HOMOP model.  

We evaluated the performance of the HETOP and HOMOP models by computing the bias and 

RMSE of the estimated means, standard deviations, and ICCs. For the means and standard deviations we 

focused primarily on the aggregate bias and RMSE (averaged across all 𝐺𝐺 = 100 groups) for each 

estimator 𝜃𝜃� (where 𝜃𝜃 could be a mean or a standard deviation) by computing:  
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where 𝑅𝑅 is the number of converged replications (usually 1000), 𝜃𝜃�𝑔𝑔𝑔𝑔 is the estimate for group 𝑔𝑔 in 

replication 𝑟𝑟 and 𝜃𝜃𝑔𝑔 is the true value. For the ICC estimates, 𝐼𝐼𝐼𝐼𝐼𝐼� , bias and RMSE were computed as: 

To evaluate the accuracy of our formulas for the standard errors (SE) of group means and standard 

deviations we computed the average ratio of the median7 estimated SE of a parameter to its empirical SE 

(the standard deviation of the sampling distribution of the parameter) across all 𝐺𝐺 = 100 groups in a 

condition: 

To evaluate the accuracy of the standard error formula of the estimated ICC’s, we compute the ratio of 

the median estimated SE of the ICC to its empirical SE: 

                                                           
7 We used the median rather than the mean estimated standard error to reduce the impact of extreme standard 
error estimates, primarily in conditions with small sample sizes and wide or skewed cutscores. 
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where 𝑆𝑆𝑆𝑆�𝜃𝜃�𝑔𝑔𝑔𝑔� and 𝑆𝑆𝑆𝑆�𝐼𝐼𝐼𝐼𝐼𝐼� 𝑟𝑟� are the observed standard deviations of the sampling distributions of the 

relevant parameter estimates across the 𝑅𝑅 replications for a given condition. If our SE formulas in 

Appendix B are accurate, we expect the ratios in (15) and (16) to be close to 1. We also computed the 

95% confidence interval (CI) coverage rates for each parameter, computed as the proportion of cases for 

which �𝜃𝜃�𝑔𝑔𝑔𝑔 − 𝜃𝜃𝑔𝑔� < 1.96 ∗ 𝑆𝑆𝑆𝑆�𝜃𝜃𝑔𝑔𝑔𝑔  or �𝐼𝐼𝐼𝐼𝐼𝐼� 𝑟𝑟 − 𝐼𝐼𝐼𝐼𝐼𝐼� < 1.96 ∗ 𝑆𝑆𝑆𝑆�𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟. If the estimates are biased, the CI 

coverage rates will not equal 95%, however, even if the standard error formulas accurately reflect 

sampling variability. 

Finally, we present results describing the loss of efficiency (in terms of increased sampling 

variance) when estimating group means and standard deviations from coarsened rather than full data. 

For each condition we estimate relative efficiency as the average efficiency ratio across groups. We 

define this as the average (across groups) of the ratio of the observed sampling variance of the target 

parameter in the simulations (using coarsened data) to its theoretical sampling variance if it were 

estimated from continuous data: 

where 𝜃𝜃 is either a mean or a standard deviation, 𝑉𝑉𝑉𝑉𝑉𝑉� �𝜃𝜃�𝑔𝑔𝑔𝑔� is the observed variance in estimates of the 

target parameter across the 𝑅𝑅 replications and 𝜏𝜏𝜃𝜃𝑔𝑔
2  is the theoretical sampling variance of the estimator 

based on continuous data (when 𝜃𝜃 is the mean, 𝜇𝜇𝑔𝑔∗ , then, 𝜏𝜏𝜃𝜃𝑔𝑔
2 = 𝜎𝜎𝑔𝑔2/𝑛𝑛𝑔𝑔; when 𝜃𝜃 is the standard deviation, 

𝜎𝜎𝑔𝑔∗, then, 𝜏𝜏𝜃𝜃𝑔𝑔
2 = 𝜎𝜎𝑔𝑔2 ∗ �2�𝑛𝑛𝑔𝑔 − 1��−1). An efficiency ratio of 1.0 would indicate that estimates based on 

coarsened data have the same sampling variance as estimates based on continuous data; efficiency ratios 

larger than 1.0 indicate there is greater variability in estimates based on coarsened data. The efficiency 

ratio can be interpreted as the ratio by which the sample size would need to be increased to estimate the 

parameters from coarsened data with the same precision as if the parameters were estimated from 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃 =
1
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�
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𝜏𝜏𝜃𝜃𝑔𝑔
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, (17) 
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continuous data. 

Because the 100 true group means and standard deviations were held constant across the 1000 

replications within a given scenario, we also examine the bias, RMSE and SE performance for individual 

groups within a particular condition when relevant. Online Appendix C contains detailed tables of all 

aggregate bias, RMSE and SE results. We used the constraints 𝐏𝐏𝐌𝐌� ′ = 𝟎𝟎 and 𝐏𝐏𝚪𝚪� ′ = 𝟎𝟎 to identify the 

model, and the ML algorithm converged in all but 5 of the total 128,000 replications. 

 

2.2 HETOP Model Simulation Results 

2.2.1 Recovery of Means 

The aggregate bias of means estimated with the HETOP model was indistinguishable from 0 for 

all conditions, and the bias for individual groups was also indistinguishable from 0 in almost all of the 

scenarios we explored. The one exception was in the small sample (n=25) simulations with a large ICC 

(0.20), large CV (0.3) and skewed or wide cutscores; in these cases, we detected non-zero bias for some 

groups, though the bias was very small, nearly always less than 0.05 standard deviation units for any 

given group. Moreover, not only was this bias small in absolute terms, but it was also very small in 

relation to the aggregate RMSE of the estimated means (which in this case was on average approximately 

ten times larger than the largest bias we observed). We do not show these results for parsimony. The 

precision of the estimated means varied primarily as a function of sample size, although when sample 

sizes were small the sampling variance was modestly affected by the location of the cutscores; sampling 

variance was consistently lowest for estimates based on the “many” cut score condition, as one would 

expect given the light degree of coarsening.  

2.2.2 Recovery of Standard Deviations 

The top panel of Figure 1 shows the average bias in standard deviation estimates across all 

groups and all replications for each condition. This figure illustrates that there is some negative bias in the 
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standard deviation estimates from the HETOP model and that the bias is primarily a function of sample 

size that is exacerbated when cutscores are skewed or wide. Note the average bias for standard 

deviations is quite small compared to the true standard deviation of scores, typically less than 1% of the 

size of the true standard deviations, except when sample sizes are less than 50 and the cutscores are 

skewed or wide (the average standard deviation is approximately 0.89 when ICC = 0.20 and 0.97 when 

ICC = 0.05, and the largest absolute bias in any condition is approximately 0.045).  

[Figure 1 here] 

When CV = 0 and the HOMOP model is the correct model, the top panel of Figure 1 indicates a 

very slight negative bias in HOMOP standard deviation estimates that generally approaches 0 with 

increasing sample size more quickly than the corresponding HETOP estimates, particularly with skewed or 

wide cutscores. That is, when the group distributions are truly homoskedastic and the coarsening is done 

sub-optimally, the HOMOP model produces less biased estimates of standard deviations than the HETOP 

model. Note, however, that the HOMOP model produces modest positive bias in the standard deviation 

estimates in the CV = 0.3 conditions (where the HOMOP model is not the correct model), particularly 

when sample sizes are large. Given the misspecification of the model, such bias is not surprising.  

 The bottom panel of Figure 1 depicts the RMSE of standard deviation estimates across conditions 

as defined in Equation (13). The results in Figure 1 together suggest that when the data are 

homoskedastic, the HOMOP model is generally (and unsurprisingly) preferable to the HETOP model. If 

data are heteroskedastic, however, the HOMOP model will systematically over/underestimate individual 

group standard deviations, with bias inversely related to the true standard deviation. Nonetheless, if one 

wishes to minimize RMSE, it may still be better to use a HOMOP model if sample sizes are small. In the 

scenarios shown in Figure 1 the HOMOP model generally yields a smaller RMSE than the HETOP model for 

scenarios with 𝑛𝑛 < 100. The sample size at which the HOMOP model is preferable to the HETOP model 

(in terms of RMSE) will be a function of a number of factors, particularly the CV of group variances and 



 
 

21 

the location of the cutscores. We investigate this bias/variance tradeoff further in Section 2.3. 

Figure 2 provides more detail on the systematic patterns of bias in group standard deviation 

estimates from the HETOP model, showing the bias in standard deviation estimates as a function of the 

true population means and standard deviations for the condition in which ICC=0.20 and CV=0.3. Each 

panel in Figure 2 shows the bias as a function of groups’ true mean and standard deviation for a given 

sample size and cut score condition, with the x-axis indicating group means and y-axis indicating group 

standard deviations. The figure makes clear that the bias in estimated standard deviations varies with a 

group’s true mean and standard deviation, when cutscores are skewed or wide and sample sizes are 

small. The top left panel, for example, shows that nearly all group standard deviation estimates are 

negatively biased when n=25 and cutscores are skewed, but the bias is largest for groups with larger true 

means and smaller true standard deviations. This pattern is a result of the loss of information due to the 

coarsening of the data. If a group’s true standard deviation is small and its true mean is high, then when 

the cutscores are skewed the coarsening leads to observed data with little information (most cases will 

fall in the top category, providing little information about the group’s standard deviation) and to 

underestimation of standard deviations. In larger samples, coarsening leads to much less consequential 

loss of information, however, as is evident in the bottom (n=400) row of panels, where absolute bias is 

less than 0.01 for all but one group across all cutscore conditions. Although not pictured, the pattern of 

small negative bias in small groups is similar when CV=0.0. 

[Figure 2 here] 

2.2.3 Recovery of ICC 

Figure 3 shows the bias in ICC estimates across conditions. The ICC estimates are upwardly 

biased, particularly when sample sizes are small; this is partly a result of the small negative bias in 

standard deviations in these cases (see Figure 1). The bias in the HETOP ICC estimates does not appear to 

depend on the true CV, but is modestly larger when the true ICC is larger. When CV=0, the HETOP and 
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HOMOP estimates are similarly biased in most cases, though the bias is slightly lower in the HOMOP 

model when the cutscores are skewed or wide. When the data are heteroskedastic (CV = 0.3), the 

HOMOP ICC estimates are biased even when 𝑛𝑛 = 400, due to the misspecification of the model. In all 

cases, the bias is largest when cutscores are skewed or wide. Overall, however, the bias in ICCs is 

relatively small, generally less than 0.01 unless 𝑛𝑛 = 25 or the cutscores are skewed. 

[Figure 3 here] 

2.2.4 Accuracy of Standard Errors 

The accuracy of the standard errors in the simulations was similar across ICC and CV conditions. 

For parsimony and to limit sampling variability, Table 1 shows the SE ratios and CI coverage rates 

averaged across the 4 combinations of ICC (.05 and .20) and CV (0.0 and 0.3) conditions. Table 1 indicates 

that estimated SEs and CIs for all three parameters were accurate with moderate and large sample sizes 

(𝑛𝑛 = 100 or more), but less accurate with smaller sample sizes. SEs and CIs were least accurate with 

small sample sizes when cutscores were widely spaced. In such cases, the approximations used to derive 

the standard error formulas (Appendix B) appear to break down. 

[Table 1 here] 

2.2.5 Efficiency of Estimators 

Figure 4 presents the average efficiency ratio across all 100 groups for each condition when using 

the HETOP model. The top panel shows average efficiency ratios for estimated means while the bottom 

panel shows the average efficiency ratios for the standard deviations; each panel represents a different 

ICC and CV condition while each line represents a different cutscore condition. For the means, the loss of 

efficiency is moderate and depends primarily on the cutscore locations, with the greatest loss of 

efficiency when the cutscores are skewed low. Within any combination of cutscores, CV, and ICC, the 

relative loss of precision is largest when samples are small. The average efficiency ratio for estimated 

means across all groups and conditions is 1.36, ranging from a minimum of 1.06 (in the case where there 
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are many cutscores, a CV of 0.3, an ICC of 0.05, and 𝑛𝑛 = 400) to a maximum of 2.49 (in the case where 

the cutscores are skewed low, the CV is 0.3, the ICC is 0.20, and 𝑛𝑛 = 25). This indicates that in some 

conditions, the coarsening of the data results in very little loss of precision, while in others (very small 

group sizes and skewed cutscores) the loss of precision is more substantial. 

[Figure 4 here] 

The efficiency loss with respect to estimating group standard deviations is larger than when 

estimating means, but again, the efficiency ratio varies considerably depending on cutscore locations and 

sample size. The skewed low cutscore condition is consistently the least efficient, and the many cutscores 

condition is consistently the most efficient, with average efficiency ratios of 3.53 and 1.37, respectively, 

averaging across all CV’s, ICC’s, and group sizes. The efficiency ratio in the wide cutscore condition 

appears to be most dependent upon group sample sizes: when group sample sizes are 25, the average 

efficiency ratios range from 3.12 to 3.93 across the ICC and CV conditions; they are half as large (1.60 to 

1.82) when sample sizes are 400.  

 

2.3 PHOP Model Simulation Conditions and Procedure  

When the data are truly homoskedastic, the simulation results in Section 2.2 show that a HOMOP 

model with all group standard deviations constrained to equality performs better than a fully 

heteroskedastic model. However, the results also suggest that in some truly heteroskedastic cases with 

small sample sizes, the HOMOP model may be preferable, as reductions in RMSE could outweigh 

increases in bias for group standard deviation estimates. In the simulations above, however, all groups in 

a given simulation scenario had the same sample sizes, a condition that may not often hold in practice.  

Anticipating contexts in which sample sizes across groups differ, we evaluate the performance of 

a partially constrained heteroskedastic ordered probit model (PHOP) in which standard deviation 

estimates for small groups are constrained to equality while those for large groups are freely estimated. 
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Because the efficiency/bias tradeoff implicit in constraining group standard deviations will depend on 

how much true variation in standard deviations there is, we conduct these simulations in populations 

with different degrees of heteroskedasticity (CV). 

We follow the same general simulation methodology as outlined in Section 2.1, but with the 

following modifications. We generate data from five populations, each with ICC = 0.20, and one of five 

different CVs of group variances (0.0, 0.1, 0.2, 0.3 or 0.4). Each population contains 36 group types whose 

means and standard deviations are bivariate uniformly distributed with values set to produce the defined 

ICC and CV. For each group type, we draw 7 random samples of sizes 𝑛𝑛=25, 50, 75, 100, 150, 200, and 

400 from normal distributions defined by each of the 36 group mean/standard deviation values. This 

yields 7 × 36 = 252 groups, one of each combination of mean, standard deviation and sample size. We 

then coarsen these scores four separate times, using the same cutscores described above (i.e., the “mid”, 

“many”, “skewed”, and “wide” conditions). For each coarsened sample, we then fit 8 different models: 

the HETOP and HOMOP models, as well as PHOP models where groups with sample sizes less than or 

equal to either 25, 50, 75, 100, 150 or 200 were all constrained to be equal. We repeated this process for 

1000 replications. We used the constraints 𝐏𝐏𝐌𝐌� ′ = 𝟎𝟎 and 𝐏𝐏𝚪𝚪� ′ = 𝟎𝟎 to identify the model. The ML 

algorithm converged in all 40,000 replications using the “many” cuts cores, and failed to converge in nine, 

13 and 271 of the 40,000 replications using the “mid”, “skewed” and “wide” cutscores respectively. 

 

2.4 PHOP Model Simulation Results  

In general, results for the bias, RMSE and standard errors were similar for the overlapping HETOP 

and HOMOP conditions here and in Section 2.2, suggesting that the conclusions above remain largely 

unchanged for conditions with groups of varying sample sizes. However, in some cases there was less bias 

in HETOP standard deviation estimates for groups with small sample sizes in the simulations with a range 

of group sizes. This may result from the fact that the overall standard deviation (𝜎𝜎�′) is more accurately 
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estimated when there are some groups with large sample sizes, so that less bias is introduced when we 

divide by this estimated standard deviation to obtain the 𝜎𝜎�∗ estimates. For the PHOP models, the 

accuracy of the estimated standard errors was very good: the ratio of median estimated to empirical 

standard errors was close to 1 in all cases.  

Our primary motivation for testing the PHOP models was to assess whether they reduce the 

aggregate RMSE of group standard deviation estimates. Estimating a single pooled standard deviation 

estimate across small groups will yield more precise (but potentially biased) estimates of small groups’ 

group standard deviations; if the increase in bias is outweighed by the reduction in error, the PHOP model 

may be preferred. Hence our discussion of the results in this section focuses on the RMSE of the standard 

deviations of groups of various sizes.  

Figure 5 displays the RMSE of group standard deviation estimates for different PHOP models in 

the condition in which 𝐶𝐶𝐶𝐶 = 0.2 and data were coarsened with the “mid” cutscores. Each panel of the 

figure displays the aggregate RMSE of standard deviation estimates for a different PHOP model (e.g., 

PHOP25 is a model in which group standard deviations are constrained to equality for groups with 𝑛𝑛 ≤

25); each panel also includes results for the HOMOP (dotted line) and HETOP (dashed line) models, which 

are the same across panels as they are not affected by the sample size threshold used in the PHOP model. 

We show RMSE disaggregated by group size here (unlike in Figure 1) because the PHOP model treats 

groups of different sizes differently by design. Figure 5 shows that the RMSE of constrained group 

standard deviation estimates in the PHOP model are nearly identical to HOMOP model RMSEs while the 

unconstrained group standard deviation estimates are nearly identical to the HETOP RMSEs. The pattern 

of constrained and unconstrained group RMSEs tracking the HOMOP and HETOP model results was 

consistent across CV values (not shown). 

[Figure 5 here] 

Figure 5 suggests there will be an optimal sample size threshold at which to constrain standard 
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deviation estimates to minimize the overall RMSE. Figure 6 displays information useful for determining 

such a threshold for each 𝐶𝐶𝐶𝐶-by-cutscores condition. Each panel of Figure 6 shows RMSE of group 

standard deviations (aggregated across all sample sizes) for each model type and each 𝐶𝐶𝐶𝐶 condition. The 

upper left panel, for example, shows the results for the “many” cutscore condition, and includes a line for 

each 𝐶𝐶𝐶𝐶 condition. For a given 𝐶𝐶𝐶𝐶 and cutscore condition, an optimal threshold can be identified by 

finding the model that minimizes RMSE for the corresponding line. When the true 𝐶𝐶𝐶𝐶 is 0, the HOMOP 

model minimizes RMSE in all conditions. When the true 𝐶𝐶𝐶𝐶 is 0.2, the optimal models (among those we 

tried) would be PHOP50, PHOP100, PHOP75, and PHOP150 for the many, mid, wide and skewed cutscore 

conditions, respectively. Although these results do not cover all possible combinations of ICC, CV, and 

cutscore locations, they are suggestive about the conditions under which a PHOP model would minimize 

the RMSE of group standard deviation estimates. In analysis of real data, analysts will know the location 

of the cutscores, the number of groups, and the group sizes; they may also have information about the 

range of plausible values of the ICC and CV. These could be used to conduct customized simulations of 

the type we show here to make an informed decision about the optimal HETOP/PHOP/HOMOP model to 

select to minimize RMSE, if that is their goal.  

[Figure 6 here] 

 

2.5 Summary of Simulation Analyses 

These simulations demonstrate that the HETOP model works well when the model matches the 

data generating process. Unbiased and precise recovery of standard deviations generally requires group 

sizes of 100 or more. Figure 1 suggests that in some cases where sample sizes are small, a homoskedastic 

model may produce more efficient (although biased) standard deviation estimates even if the data are 

truly heteroskedastic. The results in Section 2.4 suggest that using a PHOP model, which constrains small 

groups to have equal standard deviation estimates, improved the efficiency of standard deviation 
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estimates with only a relatively small increase in average bias, thus reducing the RMSE. Although the 

optimal group size at which to constrain the group standard deviations to be equal is not a priori clear in 

any given scenario, the results above suggest that the analyst may be able to make an informed choice to 

achieve a roughly optimal model. 

 

3 Application of the HETOP Model to Real Data 

The simulations in Section 2 indicate that the HETOP model accurately recovers means, standard 

deviations, and ICCs from coarsened data across a range of scenarios when sample sizes are moderately 

large and the group distributions are normal. This section analyzes 18 sets of real test score data to 

investigate whether means and standard deviations can be recovered from real coarsened test score 

distributions. To carry out these analyses, we selected datasets for which we had access to both the 

coarsened proficiency data and the scale scores (the uncoarsened, continuous data) for each student: 10 

datasets from a mid-size state’s testing program and eight datasets from the state NAEP administrations 

in 2009 and 2011. In effect, these analyses assess whether the actual test score distributions in these 18 

cases satisfy the respective normality assumption of the HETOP model.  

 

3.1 Data 

The first eight datasets contained student-level records for the 2009 and 2011 Grade 4 and 8 

Main NAEP mathematics and reading administrations, with each dataset containing scores for a single 

year-by-grade-by subject combination (e.g., 2009 Grade 4 math scores constitute one dataset). The 

groups in these datasets were states, and the aim was to estimate the means and standard deviations of 

state test score distributions with the HETOP model. Hence there were 50 groups in each of the NAEP 



 
 

28 

datasets, with a median group (state) sample size of 3,050 across all eight datasets.8  

The other 10 datasets consist of mathematics and reading test scores from a medium-sized state 

for a cross-section of approximately 90,000 students in grades 4 through 8 during the 2005-2006 school 

year. Each dataset contained student-level scores from a single grade-by-subject combination, with 

scores grouped at the school level, so that the target estimates of interest were the school means and 

standard deviations of test scores for given grade levels. Across the 10 state datasets the number of 

groups (schools) ranged from 428 to 1,244 and the median group (grade within school) sample size 

ranged from 70 to 194. Both the NAEP and State testing programs use three unique cutscores in each 

grade and subject level to classify students into one of four ordered proficiency categories. Online 

Appendix Table D1 provides detailed descriptive information about the 18 datasets.  

 

3.2 Comparison of HETOP and Uncoarsened Estimates 

If the test scores in these 18 datasets are respectively normal, and if the group sample sizes are 

large and the cutscores are well placed, the HETOP model should return precise, unbiased estimates of 

the group means and standard deviations in the continuous metric of 𝑦𝑦∗, as our simulation suggests. If, 

additionally, the function relating the reported scale scores to the metric in which the distributions are 

normal is linear then group means and standard deviations based on the student-level scale scores should 

be perfectly correlated (within the limits of sampling variability) with the group means and standard 

                                                           
8 NAEP is administered to a sample of students in the nation, and special scoring and scaling techniques result in 
“plausible values” (e.g., Mislevy, Johnson, & Muraki, 1992) instead of individual scores. For each of the eight year-
grade-subject combinations in the dataset, we had five plausible values for each student. To generate a dataset with 
a single score for each student that could be used to compare with HETOP estimates, we created a synthetic dataset 
using the first set of plausible values for all students. In order to avoid complications from comparisons using 
multiple plausible values and sampling weights, we generated an artificial sample for each state using the following 
procedure. We drew a random sample with replacement from the set of non-missing first plausible values, with 
probability of selection proportional to original sampling weights. This created a random sample from a population 
defined by the (weighted) observed first plausible values in each state. We sampled 𝑁𝑁𝑔𝑔 values for each state, where 
𝑁𝑁𝑔𝑔 was the original number of unique students with non-missing data in state g. Using NAEP’s actual proficiency 
cutscores for each subject/grade combination, we calculated the number of students in the synthetic sample 
scoring in each proficiency category.  
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deviations based on fitting the HETOP model to the coarsened proficiency data. This suggests we could 

examine the correlation between HETOP estimates and estimates based on observed scale scores to 

assess the extent to which the empirical test score distributions satisfy the respective normality 

assumption of the model.  

An imperfect correlation, however, might result not only from a failure of respective normality, 

but also might arise if a) the function 𝑓𝑓 is not linear; or b) the estimates are imprecise because sample 

sizes are not large or the cutscores are not sufficiently informative. The first condition will lead to a 

nonlinear association between the two sets of estimates. The second will produce a noisy association. To 

assess the respective normality assumption in real test score data, then, we must determine whether the 

less-than-perfect correlation between the HETOP estimates and the estimates based on the observed 

scale scores can be explained by the error that comes from coarsening and/or the non-linearity of 𝑓𝑓. We 

describe our approach to doing this below. To the extent that these factors do not explain an observed 

correlation less than one, the test score distributions are not respectively normal.  

First, we estimated group means and standard deviations based on the original student-level 

scale scores, using traditional estimators of means and standard deviations. We refer to these as the 

“original” scale score estimates. Second, to model the data that researchers may be limited to in practice, 

we coarsened the scale scores according to the operational NAEP and State cutscores. We then used the 

HETOP model to estimate means and standard deviations based on the coarsened frequency counts. We 

refer to these as the “H4” estimates because they are based on four proficiency categories. The 

correlation between these two sets of estimates will be degraded by imprecision due to the coarsening 

and by non-linearity in 𝑓𝑓. 

Third, to generate HETOP estimates less affected by loss of information due to coarsening, we 

coarsened each dataset a second time, using 19 equal-interval cutscores that classified students into 20 

“proficiency” categories (instead of four). We then estimated means and standard deviations for each 
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group with a HETOP model using the 20 observed frequencies for each group. We refer to these as “H20” 

estimates, because they are based on 20 proficiency categories.9 

Finally, we estimate a function 𝑓𝑓∗ that, when applied to the observed student-level scale scores 

simultaneously renders all of the within-group distributions as nearly normal as possible. We estimate 𝑓𝑓∗ 

from the mapping between the 19 cutscores estimated from the H20 model (i.e., 𝑐̂𝑐1∗, 𝑐̂𝑐2∗,…, 𝑐̂𝑐19∗ ) and their 

corresponding values on the reported score scale (𝑐𝑐1, … , 𝑐𝑐19). We estimate a monotonic function that 

goes through these 19 points (so that 𝑓𝑓∗(𝑐𝑐) = 𝑐̂𝑐∗); this function will closely approximate a function that 

renders the within-group distributions as nearly normal as possible. We then apply this transformation to 

the observed student-level scale scores, resulting in transformed scores, 𝑦𝑦�∗, for each student. If test 

scores are respectively normal, this transformation should render the group score distributions normal; 

the group means and standard deviations of 𝑦𝑦�∗ will be linearly related, within sampling variability, to 

those estimated from the HETOP model applied to coarsened data. We refer to group means and 

standard deviations based on these normalized 𝑦𝑦�∗ scores as “transformed” estimates. The procedure 

used to estimate 𝑓𝑓∗ is described in Online Appendix E. 

We calculated Pearson correlations between these four sets of estimates for each of the 18 

datasets. These correlations are summarized in Table 2, which presents the average, minimum and 

maximum correlation among the estimates for the NAEP and State datasets separately (correlations for 

each of the 18 data sets are in Online Appendix Table D2). Column (1), for example, summarizes 

correlations between means estimated based on the H4 and uncoarsened original scale scores, while 

column (5) summarizes the corresponding correlations between the standard deviation estimates. 

[Table 2 here] 

As mentioned above, these correlations may be less than 1.0 even if score distributions are 

                                                           
9 We could have used more than 20 categories, but given the finite number of possible scale scores and size of the 
groups, additional categories add vanishingly little additional information. 



 
 

31 

respectively normal. If the test score data are respectively normal, however, then we expect the 

correlations in columns (2) and (6) to be near 1.0, because these correlations are based on estimates that 

adjust for a lack of normality of the reported scale score metric (transformed) and the error due to 

coarsening into only 4 categories. Indeed, the average correlations between these estimates are 

uniformly near 1 for all datasets (the lowest correlation across both columns (2) and (6) is 0.979), 

suggesting both that the data are respectively normal and that the H20 model accurately recovers the 

group means and standard deviations in the 𝑦𝑦∗ metric. 

To evaluate whether the original scale scores are reported in the metric in which they are normal 

in each group, we examine two sets of results. First, we inspect the correlations between the original and 

transformed estimate in columns (3) and (7). If the original test score data were reported in the normal 

metric, we would expect these correlations to be close to 1, because 𝑓𝑓∗ would be linear. Second, we plot 

the function 𝑓𝑓∗ in each case to examine its linearity directly. The correlations are near 1 for the means, 

but lower (as low as 0.83 in one case) for the standard deviations. The plots of 𝑓𝑓∗ (in Online Appendix 

Figure E1) show very slight nonlinearity in most cases. Both of these patterns indicate that while the 

original test score scales are generally not one in which the distributions are as near to normal as 

possible, the original scales are not very different from such a scale. The modest departure from 

normality appears to cause more discrepancy in the estimated standard deviations (average correlations 

of 0.955 and 0.932 for NAEP and State) than in the estimated means (average correlations of 0.999 for 

both the NAEP and State scales). 

Finally, it is useful to compare columns (2) and (4) and columns (6) and (8); this comparison 

indicates the extent to which coarsening into 4 rather than 20 categories reduces the precision of the 

estimated means and standard deviations. The correlations between the H20 and transformed estimates 

of means (column 2) are generally only modestly larger than those between the H4 and the transformed 

estimates (column 4). In the case of the estimated standard deviations, however, coarsening substantially 
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degrades precision: the correlations in column (8) are much lower than in column (6). This is consistent 

with our simulation results showing that the HETOP model more reliably estimates group means than 

standard deviations, particularly when group sizes are small and cutscores are not optimally located, as is 

the case in the state data sets. 

These analyses suggest the assumption of respective normality of test score distributions is 

reasonable in the datasets we examined, which include both school-level and state-level groups. 

Moreover, the reported scale scores in these datasets appear to be in a metric that is very close to the 

latent metric in which the means and standard deviations are estimated by the HETOP model. This may 

not be true for all empirical test score distributions, of course; it would be useful to test in other cases 

where continuous scores are available.   

 

4 Discussion 

This paper introduces a method for estimating the means and standard deviations of continuous 

test score distributions in multiple groups using only coarsened proficiency data. Through simulations and 

real data analyses, we demonstrate that accurate estimation of means and standard deviations of test 

score distributions for multiple groups (states, districts, schools, etc.) is possible under a wide range of 

scenarios, with modest loss of efficiency, particularly when sample sizes are larger than 50 and when the 

cutscores are not highly skewed. The analyses also showed that estimates of secondary statistics such as 

the ICC can be recovered accurately, with slight positive bias when group sizes are small. While estimates 

of group standard deviations were accurate across all conditions with larger sample sizes, there was 

evidence of small negative bias in some conditions with smaller sample sizes, particularly when the 

location of cutscores used to coarsen the data are unequally and/or unevenly spaced, thus providing 

relatively little information about the original distributions. The bias was very small when group sample 

sizes were 100, and modestly larger with small samples of size 25, though the average bias was never 
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sizeable compared to the true standard deviations or the sampling variance of the estimates. Our 

analyses of real test score datasets suggest the primary assumption of respective normality is reasonable 

for these particular test scores and likely those developed under similar conditions. Further simulation 

studies to evaluate the methodology across a wider range of conditions, including those where data are 

not respectively normal, would be a useful extension to this work. 

The simulation results and real data analyses suggest a few common considerations for 

researchers to attend to when applying the HETOP model in practice. First, because the quality and 

reliability of HETOP estimates (particularly for group standard deviations) depend primarily on group 

sample sizes and cut score locations, an inspection of the overall proportion of students within each 

proficiency category and the proportion of groups with zero observations in one or more categories can 

be useful indicators of potential problems. Other indicators include models that either will not converge, 

are slow to converge, or converge but produce abnormally large standard errors. In these cases, our 

simulations and other work with real test score data suggest a PHOP model is a good way to overcome 

some data limitations and is generally preferable to a HOMOP model unless the assumption of 

homoskedasticity is defensible. 

In fitting the PHOP model, the analyst must determine a sample size threshold below which to 

impose the homoskedasticity constraint. This choice can be guided by knowledge of the cutscore 

locations, the number and size of groups, and prior research that provides information about plausible 

values of the ICC and CV. When the CV of group variances is approximately 0.2 (roughly the average value 

observed in the data we analyzed), constraining the standard deviations of groups smaller than 100 is 

generally near optimal in our simulations. Of course, RMSE need not be the only criterion used to 

determine the best model. For analysts who are less willing to tolerate bias than error variance, a smaller 

constraint threshold would be preferable, and vice versa. In addition, if group means are of primary 

interest, the choice of a PHOP model will matter little; if standard deviations are of interest, the bias-
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precision tradeoff is more salient. Further development of practical model fit statistics and diagnostics 

that can inform PHOP model selection are an important direction for future research. 

One benefit of the PHOP model is that it improves estimation for small groups, particularly when 

cut score locations are sub-optimal. The challenges for estimation posed by small sample sizes or extreme 

cutscores could also be addressed with alternative estimation strategies or frameworks, such as Bayesian 

or random-effects models. It is possible to estimate a mixed-effects HETOP model (see for example, Gu, 

Fiebig, Cripps, & Kohn, 2009; Hedeker, Demirtas, & Mermelstein, 2009) from which one could obtain 

shrunken estimates of group means and standard deviations. These Bayesian estimates would have 

smaller RMSE than our ML estimates, but would also contain more bias. The decision of whether to prefer 

more-biased, lower-RMSE shrunken estimates over less-biased, higher-RMSE ML estimates depends on 

how one wants to use the resulting estimates. If the estimates will be used as outcome variables in 

subsequent models or as descriptive statistics, the (less biased) ML estimates may be preferable to the 

(more biased) shrunken estimates. If the estimates will be used as predictor variables in subsequent 

models, however, the shrunken estimates may be preferable (although in this case they should, in 

principle, be shrunken to their mean conditional on the other covariates to be used in the model). Shear, 

Castellano, and Lockwood (2016) present some preliminary comparisons of these two approaches in the 

context of coarsened test score data, but additional work exploring the potential benefits of Bayesian 

HETOP models would be very useful.  

In our discussion here we have ignored the potential effects of measurement error. If we think of 

the continuous scores in the 𝑦𝑦 metric as containing measurement error, then the key assumption of the 

HETOP model is that the observed, error-prone test score distributions are respectively normal. Given this 

assumption, estimation proceeds as we describe it above, and the resulting estimates are understood as 

means and standard deviations of the error-prone scores in the 𝑦𝑦∗ metric. To recover means and 

standard deviations of true scores in the 𝑦𝑦∗ metric, one would need information about the reliability of 
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the test scores in that metric. Although this is not identical to the reliability of scores in the metric 𝑦𝑦 (the 

metric reported by test score developers), unless the function 𝑓𝑓 is linear, Reardon and Ho (2015) show 

that using published reliabilities to adjust group means and standard deviations on a transformed scale 

generally produces only trivial bias, given that widely-used standardized tests typically have high 

reliability. When reliability is high, distortions of measurement error due to the transformation function 𝑓𝑓 

are trivial unless 𝑓𝑓 is extremely non-linear. As a result, standard measurement error adjustments, based 

on published reliabilities of scores in the 𝑦𝑦 metric, can be made to yield estimates of groups’ true test 

score means and standard deviations in the 𝑦𝑦∗ metric. 

Finally, as mentioned above, these methods are applicable whenever data can be conceptualized 

as coarsened: the result of some form of polychotomization, censoring, binning, or rounding. In the case 

of aggregate proficiency data, such as that contained in the EDFacts database, such a model is clearly 

applicable, and our results show that the HETOP model can provide estimates of means and standard 

deviations that can overcome some of the limitations with such data as described by Ho (2008) and 

others. In the case of AP exams, where scores are only reported on a 1-5 ordinal scale, one might still 

presume the existence of a continuous underlying variable of which the observed scores are a coarsened 

version. In such cases, our methods provide a way to estimate the distributions of this underlying 

continuous variable in multiple groups. Ordinal data of many kinds—from Likert scale survey data to 

Apgar scores and from discrete levels of educational attainment to demographic age or income bins—can 

be thought of as representing coarsened versions of latent continuous variables. In many of these cases, 

the methods described here could be usefully applied to estimate moments of group distributions. 
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Figures and Tables 

 
Table 1. Ratio of Median Estimated Standard Error to Empirical Standard Error and 95% Confidence Interval 
Coverage for HETOP Estimates by Parameter, Standard Error Formula, Sample Size and Cutscores. 
 

    
Group  
Mean 

Group Standard 
Deviation ICC 

Sample Size Cutscores Ratio CI Ratio CI Ratio CI 
25 Skewed (05/30/55) 0.923 0.943 0.865 0.892 0.914 0.975 
 Mid (20/50/80) 0.944 0.945 0.887 0.906 1.133 0.942 
 Wide (05/50/95) 1.608 0.983 1.881 0.995 3.251 0.994 
 Many (05/25/50/75/95) 0.965 0.936 0.933 0.927 1.073 0.897 
        
50 Skewed (05/30/55) 0.954 0.946 0.930 0.920 1.084 0.933 
 Mid (20/50/80) 0.973 0.948 0.944 0.929 1.084 0.940 
 Wide (05/50/95) 1.043 0.957 0.923 0.965 1.476 0.943 
 Many (05/25/50/75/95) 0.982 0.943 0.967 0.939 1.044 0.925 
        
100 Skewed (05/30/55) 0.974 0.947 0.964 0.935 1.053 0.924 
 Mid (20/50/80) 0.984 0.948 0.972 0.940 1.019 0.933 
 Wide (05/50/95) 0.996 0.948 0.957 0.951 1.093 0.929 
 Many (05/25/50/75/95) 0.990 0.946 0.983 0.945 1.019 0.932 
        
400 Skewed (05/30/55) 0.995 0.949 0.992 0.946 0.995 0.935 
 Mid (20/50/80) 0.999 0.950 0.993 0.948 0.995 0.944 
 Wide (05/50/95) 0.998 0.949 0.993 0.949 1.006 0.946 
  Many (05/25/50/75/95) 1.000 0.949 0.996 0.948 0.997 0.944 
NOTE: ICC = intraclass correlation coefficient. Ratio = ratio of median estimated standard error to empirical 
standard error. CI = confidence interval coverage rate of an estimated 95% confidence interval. 
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Table 2. Average, Minimum, and Maximum Correlations between HETOP Estimates and Uncoarsened Score 
Estimates. 
 

   Means Standard Deviations 
  (1) (2) (3) (4) (5) (6) (7) (8) 
 Estimate 1: H4 H20 Orig. H4 H4 H20 Orig. H4 
 Estimate 2: Orig. Trans. Trans. Trans. Orig. Trans. Trans. Trans. 
NAEP Average 0.995 1.000 0.999 0.996 0.851 0.995 0.955 0.910 
 Minimum 0.988 1.000 0.998 0.992 0.738 0.992 0.929 0.831 
 Maximum 0.998 1.000 1.000 0.998 0.923 0.998 0.978 0.967 
          
State Average 0.973 1.000 0.999 0.973 0.779 0.987 0.932 0.759 
 Minimum 0.941 0.999 0.998 0.941 0.667 0.979 0.835 0.626 
 Maximum 0.991 1.000 1.000 0.992 0.866 0.995 0.990 0.864 
NOTE: H4 = heteroskedastic ordered probit model with 4 proficiency categories as defined by testing program; 
H20 = heteroskedastic ordered probit model with 20 categories defined by 19 equally spaced cutscores; Orig. = 
original score scale metric; Trans. = transformed score scale metric. 
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Figure 1. Average Bias and Aggregate RMSE in Group Standard Deviation Estimates. 
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Figure 2. Bias in Standard Deviation Estimates by True Group Mean and Standard Deviation (for ICC=0.20 
and CV=0.3 condition) 
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Figure 3. Bias in ICC Estimates 
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Figure 4. Average Efficiency Ratios of Estimated Means and Standard Deviations Using HETOP Model. 
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Figure 5. RMSE of Group Standard Deviation Estimates, by Group Sample Size and PHOP Model Type with 
CV = 0.2 
 

 
 
NOTE: HETOP = heteroskedastic ordered probit model; HOMOP = homoskedastic ordered probit model; 
PHOP = partially heteroskedastic ordered probit model; RMSE = root mean squared error; CV = coefficient 
of variation. The HETOP and HOMOP lines are included for reference and are constant across all six 
panels.  
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Figure 6. Aggregate RMSE of Group Standard Deviation Estimates by Model Type, Cutscore Locations and 
CV. 
 
 

 
 
Note: CV = coefficient of variation; RMSE = root mean squared error.  
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Appendix A: Estimating the Total Between- and Within-Group Variances 

Given 𝐌𝐌� ′ and 𝚪𝚪� ′, we wish to estimate the within-and between-group variance of 𝑦𝑦. As noted in 

the text, we assume throughout this paper that the population consists of a finite number of groups (𝑔𝑔 =

1, … ,𝐺𝐺), all of which are observed. As above, 𝐏𝐏 is the 1 × 𝐺𝐺 vector of group population proportions (the 

𝑝𝑝𝑔𝑔′𝑠𝑠). We observe a sample of size 𝑛𝑛𝑔𝑔 from each group, where 𝑛𝑛𝑔𝑔 may or may not be proportional to 𝑝𝑝𝑔𝑔. 

Without loss of generality, we assume the model is fit subject to the constraints that 𝐏𝐏𝐌𝐌′ = 0 and 𝐏𝐏𝚪𝚪′ =

0. If it is not, we transform the estimate to obtain 𝐌𝐌� ′ and 𝚺𝚺�′ in this metric, as described in Online 

Appendix A.  

The between-group and within group variances are defined as  

We can compute (biased) estimates of these using their sample analogs, 𝐏𝐏𝐌𝐌� ′2 and 𝐏𝐏𝚺𝚺�′2. Below we derive 

the expected values of these estimators to assess their bias. We use the results of these derivations to 

obtain approximately unbiased estimators. 

 

Estimating 𝜎𝜎𝑊𝑊′2 

Let 𝑤𝑤𝑔𝑔 be the error in 𝛾𝛾�𝑔𝑔: 𝛾𝛾�𝑔𝑔 = 𝛾𝛾𝑔𝑔 + 𝑤𝑤�𝑔𝑔. Let 𝛀𝛀’ be the sampling variance-covariance matrix of the 

𝛾𝛾𝑔𝑔′ ’s. The diagonal elements of this are the squared sampling variances (the 𝜔𝜔𝑔𝑔2’s). Then 

  

 
𝜎𝜎𝐵𝐵′2 = 𝐏𝐏𝐌𝐌′2 

𝜎𝜎𝑊𝑊′2 = 𝐏𝐏𝚺𝚺′2. 
(A1) 



 
 

47 

 

where 𝜔𝜔𝑔𝑔2���� = 1
𝐺𝐺
𝟏𝟏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛀𝛀′) is the average sampling variance of the 𝛾𝛾�𝑔𝑔′ ’s. Under the assumption that 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑝𝑝𝑔𝑔𝜎𝜎𝑔𝑔2,𝜔𝜔𝑔𝑔2� ≈ 0, we have 

Therefore, we can compute an approximately unbiased estimate of  𝜎𝜎�𝑊𝑊′2 as 

Equation (A4) requires an estimate of 𝜔𝜔𝑔𝑔2����, the average sampling variance of the 𝛾𝛾�𝑔𝑔’s, which can be 

obtained from the estimated sampling covariance matrix of the 𝛾𝛾�𝑔𝑔’s:  

 

𝐸𝐸�𝐏𝐏𝚺𝚺�∘2� = 𝐸𝐸 ��𝑝𝑝𝑔𝑔𝜎𝜎�𝑔𝑔2
𝑔𝑔

� 

= �𝐸𝐸�𝑝𝑝𝑔𝑔𝑒𝑒2𝛾𝛾�𝑔𝑔�
𝑔𝑔

 

= �𝐸𝐸�𝑝𝑝𝑔𝑔𝑒𝑒2�𝛾𝛾𝑔𝑔+𝑤𝑤�𝑔𝑔��
𝑔𝑔

 

= �𝐸𝐸�𝑝𝑝𝑔𝑔𝑒𝑒2𝛾𝛾𝑔𝑔𝑒𝑒2𝑤𝑤�𝑔𝑔�
𝑔𝑔

 

= ��𝑝𝑝𝑔𝑔𝜎𝜎𝑔𝑔2�𝐸𝐸�𝑒𝑒2𝑤𝑤�𝑔𝑔�
𝑔𝑔

 

≈��𝑝𝑝𝑔𝑔𝜎𝜎𝑔𝑔2�𝐸𝐸�1 + 2𝑤𝑤�𝑔𝑔 + 2𝑤𝑤�𝑔𝑔2�
𝑔𝑔

 

= ��𝑝𝑝𝑔𝑔𝜎𝜎𝑔𝑔2��1 + 2𝜔𝜔𝑔𝑔2�
𝑔𝑔

 

= 𝐏𝐏𝚺𝚺∘2 ∙ �1 + 2𝜔𝜔𝑔𝑔2�����+ 2𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝑝𝑝𝑔𝑔𝜎𝜎𝑔𝑔2,𝜔𝜔𝑔𝑔2�, 

(A2) 

 𝐸𝐸�𝐏𝐏𝚺𝚺�∘2� ≈ 𝐏𝐏𝚺𝚺∘2 ∙ �1 + 2𝜔𝜔𝑔𝑔2�����. (A3) 

 𝜎𝜎�𝑊𝑊′2 =
𝐏𝐏𝚺𝚺�∘2

1 + 2𝜔𝜔𝑔𝑔2����
. (A4) 
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However, 𝛀𝛀�′ is prone to sampling variance (that is, the estimated sampling variances of the 𝛾𝛾𝑔𝑔’s 

themselves have sampling variances). Our simulations show that when 𝑛𝑛 is small, the sampling variance of 

the elements of 𝛀𝛀�′ can be very large, because the sparse coarsened data provide little information from 

which to estimate the sampling variances. As a result 𝐸𝐸 �1
𝐺𝐺
𝟏𝟏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�𝛀𝛀�′�� ≫ 1

𝐺𝐺
𝟏𝟏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛀𝛀′) in such 

cases. 

An alternate method of estimating 𝜔𝜔𝑔𝑔2���� is to derive an approximate formula based on group 

sample sizes. To do so, let 𝑢𝑢�𝑔𝑔 be the error in 𝜎𝜎�𝑔𝑔2: 𝜎𝜎�𝑔𝑔2 = 𝜎𝜎𝑔𝑔2 + 𝑢𝑢�𝑔𝑔. If a population variance 𝜎𝜎2 is estimated 

from a sample of size 𝑛𝑛 (using data that have not been coarsened), the sampling variance of 𝜎𝜎�2 is 

approximately 2𝜎𝜎
4

𝑛𝑛−1
 (Casella & Berger, 2002; Neter, Wasserman, & Kutner, 1990). Note that, for a normally-

distributed variable 𝑋𝑋 with mean 0 and standard deviation 𝑠𝑠, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋 + 𝑋𝑋2) ≈ 𝑠𝑠2 + 2𝑠𝑠4. We then have 

 𝜔𝜔𝑔𝑔2����
� =

1
𝐺𝐺
𝟏𝟏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛀𝛀�′) (A5) 
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Applying the quadratic formula to solve for 𝜔𝜔𝑔𝑔2 yields one positive root: 

where the approximation holds if 𝑛𝑛𝑔𝑔 is even moderately large. 

 Given (A7), we have  

 

𝜎𝜎�𝑔𝑔2 = 𝜎𝜎𝑔𝑔2 + 𝑢𝑢�𝑔𝑔 

𝑒𝑒2𝛾𝛾�𝑔𝑔 = 𝑒𝑒2𝛾𝛾𝑔𝑔 + 𝑢𝑢�𝑔𝑔 

𝑒𝑒2𝛾𝛾𝑔𝑔𝑒𝑒2𝑤𝑤�𝑔𝑔 = 𝑒𝑒2𝛾𝛾𝑔𝑔 + 𝑢𝑢�𝑔𝑔 

𝑒𝑒2𝛾𝛾𝑔𝑔�𝑒𝑒2𝑤𝑤�𝑔𝑔 − 1� = 𝑢𝑢�𝑔𝑔 

𝑒𝑒2𝛾𝛾𝑔𝑔�1 + 2𝑤𝑤�𝑔𝑔 + 2𝑤𝑤�𝑔𝑔2 − 1� ≈ 𝑢𝑢�𝑔𝑔 

2𝑒𝑒2𝛾𝛾𝑔𝑔�𝑤𝑤�𝑔𝑔 + 𝑤𝑤�𝑔𝑔2� = 𝑢𝑢�𝑔𝑔 

𝑣𝑣𝑣𝑣𝑣𝑣 �2𝑒𝑒2𝛾𝛾𝑔𝑔�𝑤𝑤�𝑔𝑔 + 𝑤𝑤�𝑔𝑔2�� = 𝑣𝑣𝑣𝑣𝑣𝑣�𝑢𝑢�𝑔𝑔� 

4𝑒𝑒4𝛾𝛾𝑔𝑔𝑣𝑣𝑣𝑣𝑟𝑟�𝑤𝑤�𝑔𝑔 + 𝑤𝑤�𝑔𝑔2� = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑢𝑢�𝑔𝑔) 

4𝜎𝜎𝑔𝑔4�𝜔𝜔𝑔𝑔2 + 2𝜔𝜔𝑔𝑔4� =
2𝜎𝜎𝑔𝑔4

𝑛𝑛𝑔𝑔 − 1
 

𝜔𝜔𝑔𝑔2 + 2𝜔𝜔𝑔𝑔4 =
1

2�𝑛𝑛𝑔𝑔 − 1�
 

(A6) 

 

𝜔𝜔𝑔𝑔2 = −
1
4

+
1
4�

1 +
4

𝑛𝑛𝑔𝑔 − 1
 

≈ −
1
4

+
1
4�

1 +
2

𝑛𝑛𝑔𝑔 − 1�
 

=
1

2�𝑛𝑛𝑔𝑔 − 1�
, 

(A7) 

 𝜔𝜔𝑔𝑔2���� ≈
1
𝐺𝐺
�

1
2�𝑛𝑛𝑔𝑔 − 1�

𝑔𝑔

=
1

2𝑛𝑛�
 (A8) 
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where 𝑛𝑛� is the harmonic mean of 𝑛𝑛𝑔𝑔 − 1: 𝑛𝑛� = �1
𝐺𝐺
∑ 1

𝑛𝑛𝑔𝑔−1𝑔𝑔 �
−1

. 

 Note that (A8) is based on a formula for the sampling variance of a population variance based on 

uncoarsened data. When the data are coarsened, the sampling variability of 𝜎𝜎�𝑔𝑔′2 will certainly be larger 

than that given by the formula used above (
2𝜎𝜎𝑔𝑔′4

𝑛𝑛𝑔𝑔−1
), but the difference may not be large. For example, 

suppose the true sampling variance of 𝜎𝜎𝑔𝑔′2 were 
2𝑐𝑐𝑠𝑠𝜎𝜎𝑔𝑔′4

𝑛𝑛𝑔𝑔−1
, where 𝑐𝑐𝑠𝑠 ≥ 1; then using the approximation in 

Equation (A8) in Equation (A4) will inflate our estimate of 𝜎𝜎�𝑊𝑊′2 by a factor of 𝑛𝑛�+𝑐𝑐𝑠𝑠
𝑛𝑛�+1

. Unless 𝑐𝑐𝑠𝑠 is large in 

relation to 𝑛𝑛�, the difference will be trivial.  

 The approximation in Equation (A8) needs to be modified when using either the HOMOP or PHOP 

(rather than the HETOP) model. When we fit the HOMOP model, the sampling variance in the estimate of 

the 𝛾𝛾�𝑔𝑔’s will be smaller, because the estimate is based on the pooled sample of all groups. In this case, 

𝜔𝜔𝑔𝑔2���� might be well-estimated by (A5). Alternately, because the effective sample size for estimating 𝜔𝜔𝑔𝑔2���� is 𝑁𝑁, 

and we lose a degree of freedom in estimating each group’s mean, (A8) can be replaced by 

In the PHOP model, the average sampling variance of the 𝛾𝛾𝑔𝑔’s can be approximated as  

where 𝑛𝑛�𝑔𝑔 = 𝑛𝑛𝑔𝑔 if group 𝑔𝑔’s standard deviation is not constrained, and 𝑛𝑛�𝑔𝑔 = ∑ �𝑛𝑛𝑔𝑔 − 1�𝑔𝑔∈𝐶𝐶  if group 𝑔𝑔 ∈

𝐶𝐶, where 𝐶𝐶 is the set of constrained groups.  

When estimating 𝜎𝜎�𝑊𝑊′2, we substitute either Equation (A8), (A9), or (A10) into Equation (A4) 

depending upon which model was fit. 

 

 𝜔𝜔𝑔𝑔2���� ≈
1

2(𝑁𝑁 − 𝐺𝐺)
. (A9) 

 𝜔𝜔𝑔𝑔2���� ≈
1
𝐺𝐺
�

1
2�𝑛𝑛�𝑔𝑔 − 1�

𝑔𝑔

, (A10) 
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Estimating 𝜎𝜎𝐵𝐵′2 

To compute the expected value of 𝐏𝐏𝐌𝐌� ′∘2, first note that estimating the variance of the group 

means involves error in the overall mean and the individual group means. The estimate of each group’s 

mean has two sources of error in it: 𝜇̂𝜇𝑔𝑔′ = 𝜇𝜇𝑔𝑔 − 𝑢𝑢� + 𝑒̂𝑒𝑔𝑔, where 𝑢𝑢� = ∑𝑝𝑝𝑔𝑔𝑒̂𝑒𝑔𝑔 and 𝑒̂𝑒𝑔𝑔 = 𝜇̂𝜇𝑔𝑔 − 𝜇𝜇𝑔𝑔. Then  

where 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐕𝐕′) is the 𝐺𝐺 × 1 matrix of sampling variances of the means (the diagonal of 𝐕𝐕′). So we 

can compute an unbiased estimate of 𝜎𝜎�𝐵𝐵′2 as 

Equation (A12) requires an estimate of 𝐕𝐕′, the variance-covariance matrix of the vector of estimated 

group means, 𝐌𝐌� ′. One estimate of this is the estimated matrix 𝐕𝐕�′. However, like 𝛀𝛀�′ above, 𝐕𝐕�′ is prone to 

sampling variance (that is, the estimated sampling variances of the 𝜇̂𝜇𝑔𝑔’s themselves have sampling 

variances). Our simulations show that when 𝑛𝑛 is small, the sampling variance of the elements of 𝐕𝐕�′ can be 

very large, because the sparse coarsened data provide little information from which to estimate the 

sampling variances. As a result 𝐸𝐸�𝐏𝐏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�𝐕𝐕�′�� ≫ 𝐏𝐏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐕𝐕′) in such cases. 

An alternate method of estimating 𝐕𝐕�′ is to derive an approximate formula for its diagonal 

elements based on group sample sizes. We begin by assuming that the off-diagonal elements of 𝐕𝐕′ are 

approximately 0 (they will not be exactly zero, because the estimated means are dependent on one 

another, since all are estimated simultaneously and constrained to satisfy 𝐏𝐏𝐌𝐌� ′ = 0, but they will be close 

to zero when 𝐺𝐺 and 𝑛𝑛 are moderately large). We then assume the sampling variance of 𝜇𝜇 is given by the 

standard formula (based on uncoarsened data) for the sampling variance of a mean: 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇̂𝜇) = 𝜎𝜎2

𝑛𝑛
. Then 

 

𝐸𝐸[𝐏𝐏𝐌𝐌� ′∘2] = 𝐸𝐸[𝐏𝐏(𝐌𝐌− 𝐮𝐮�′ + 𝐞𝐞�′)∘2] 

= 𝐸𝐸[𝐏𝐏𝐌𝐌∘2 − 𝟐𝟐𝟐𝟐(𝐮𝐮�′ ∘ 𝐞𝐞�′) + 𝐏𝐏𝐮𝐮�′∘2 + 𝐏𝐏𝐞𝐞�′∘2] 

= 𝐏𝐏𝐌𝐌∘2 − 𝟐𝟐𝟐𝟐𝐸𝐸[𝐮𝐮�′ ∘ 𝐞𝐞�′] + 𝐏𝐏𝐸𝐸[𝐮𝐮�′∘2] + 𝐏𝐏𝐸𝐸[𝒆𝒆�′∘2] 

= 𝐏𝐏𝐌𝐌∘2 − 𝐏𝐏𝐏𝐏′𝐏𝐏𝑡𝑡 + 𝐏𝐏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐕𝐕′) 

(A11) 

 𝜎𝜎�𝐵𝐵′2 = 𝐏𝐏𝐌𝐌� ′∘2 + 𝐏𝐏𝐕𝐕′𝐏𝐏𝑡𝑡 − 𝐏𝐏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐕𝐕′)′). (A12) 
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the diagonal elements of 𝐕𝐕′ will be 𝑣𝑣𝑔𝑔𝑔𝑔 = 𝜎𝜎𝑔𝑔′2

𝑛𝑛𝑔𝑔
. Substituting this matrix into (A12), we get 

where we substitute in the approximations of 𝜔𝜔𝑔𝑔2���� from Equations (A8), (A9), or (A10) as appropriate. 

Again, if the sampling variance of the 𝜇̂𝜇𝑔𝑔′  estimates is greater than they would be if the data were 

not coarsened, then it may be more appropriate to substitute 𝑣𝑣𝑔𝑔𝑔𝑔 = 𝑐𝑐𝑚𝑚
𝜎𝜎𝑔𝑔′2

𝑛𝑛𝑔𝑔
 into (A12) above, where 𝑐𝑐𝑚𝑚 ≥

1 is a constant. Then if we also use 𝑐𝑐𝑠𝑠 as above in the formula estimating 𝚺𝚺′∘2, (A13) becomes: 

Given that �𝐧𝐧∘−1 ∘ (𝐏𝐏∘2 − 𝐏𝐏)�𝚺𝚺�′∘2 will be small when the elements of 𝐧𝐧 are modestly large, however, 

setting 𝑐𝑐𝑚𝑚 = 1 has very little effect of the estimate of 𝜎𝜎�𝐵𝐵′2. 

 

Estimating the population standard deviation, 𝜎𝜎′ 

 Given estimates of 𝜎𝜎𝑊𝑊′2 and 𝜎𝜎𝐵𝐵′2 from (A4) and (A13), we compute  

 

𝜎𝜎�𝐵𝐵′2 = 𝐏𝐏𝐌𝐌� ′∘2 + 𝐏𝐏𝐕𝐕′𝐏𝐏𝑡𝑡 − 𝐏𝐏 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐕𝐕′) 

= 𝐏𝐏𝐌𝐌� ′∘2 + (𝐏𝐏∘2 − 𝐏𝐏) ∙ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐕𝐕′) 

= 𝐏𝐏𝐌𝐌� ′∘2 + ��𝑝𝑝𝑔𝑔2 − 𝑝𝑝𝑔𝑔�
𝜎𝜎𝑔𝑔′2

𝑛𝑛𝑔𝑔𝑔𝑔

 

= 𝐏𝐏𝐌𝐌� ′∘2 + �𝐧𝐧∘−1 ∘ (𝐏𝐏∘2 − 𝐏𝐏)�𝚺𝚺′∘2 

= 𝐏𝐏𝐌𝐌� ′∘2 +
�𝐧𝐧∘−1 ∘ (𝐏𝐏∘2 − 𝐏𝐏)�𝚺𝚺�′∘2

1 + 2𝜔𝜔𝑔𝑔2����
�  

= 𝐏𝐏𝐌𝐌� ′∘2 +
�𝐧𝐧∘−1 ∘ (𝐏𝐏∘2 − 𝐏𝐏)�𝚺𝚺�′∘2

1 + 2𝜔𝜔𝑔𝑔2����
� , 

(A13) 

 𝜎𝜎�𝐵𝐵′2 = 𝐏𝐏𝐌𝐌� ′∘2 +
𝑐𝑐𝑚𝑚

1 + 𝑐𝑐𝑠𝑠2𝜔𝜔𝑔𝑔2����
�𝐧𝐧∘−1 ∘ (𝐏𝐏∘2 − 𝐏𝐏)�𝚺𝚺�′∘2. (A14) 

 

𝜎𝜎�′ = (𝜎𝜎′2 + 𝜎𝜎′2)
1
2 

(A15) 
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where 

And we again substitute one of the approximations from Equations (A8), (A9), or (A10) for 𝜔𝜔𝑔𝑔2���� depending 

upon whether a HETOP, HOMOP, or PHOP model is fit.  

= �𝐏𝐏𝐌𝐌� ′∘2 +
𝐧𝐧∘−1 ∘ (𝐏𝐏∘2 − 𝐏𝐏)𝚺𝚺�′∘2

1 + 2𝜔𝜔𝑔𝑔2����
� +

𝐏𝐏𝚺𝚺�′∘2

1 + 2𝜔𝜔𝑔𝑔2����
��

1
2

 

= �𝐏𝐏𝐌𝐌� ′∘2 +
(𝐧𝐧∘−1 ∘ (𝐏𝐏 + 𝐧𝐧 − 𝟏𝟏) ∘ 𝐏𝐏)𝚺𝚺�′∘2

1 + 2𝜔𝜔𝑔𝑔2����
� �

1
2

  

= �𝐏𝐏𝐌𝐌� ′∘2 + 𝐐𝐐𝚺𝚺�′∘2�
1
2 , 

 𝐐𝐐 =
(𝐧𝐧∘−1 ∘ (𝐏𝐏 + 𝐧𝐧 − 𝟏𝟏) ∘ 𝐏𝐏)

1 + 2𝜔𝜔𝑔𝑔2����
, (A16) 
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Appendix B: Computation of standard errors of 𝐌𝐌� ∗ and 𝚺𝚺�∗ 

Once we have constructed 𝐌𝐌� ∗ and 𝚺𝚺�∗ via Equation (6), we must estimate the covariance matrices 

𝐕𝐕∗ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐌𝐌� ∗,𝐌𝐌� ∗), 𝐙𝐙∗ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐌𝐌� ∗,𝚺𝚺�∗), and 𝐖𝐖∗ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝚺𝚺�∗,𝚺𝚺�∗), from which we can obtain standard 

errors for the parameters of interest in the model.  

Assuming that 𝐸𝐸�𝐌𝐌� ′� = 𝐌𝐌′ and 𝐸𝐸[𝜎𝜎�′] = 𝜎𝜎′,10 the 𝑔𝑔, ℎ element 𝐕𝐕∗ is 

Now let 𝐈𝐈ℎ denote the ℎ𝑡𝑡ℎ column of the 𝐺𝐺 × 𝐺𝐺 identity matrix. Then define11 

Then define the 1 × 𝐺𝐺 vector 𝐑𝐑, with elements 𝑟𝑟ℎ, as 

                                                           
10 Even under the assumption that the HETOP estimator provides unbiased estimates of 𝐌𝐌′ and 𝚺𝚺′, the assumption 
that 𝐸𝐸[𝜎𝜎�′] = 𝜎𝜎′ is not strictly valid, given nonlinearities in Equations (8) and (9), but is a good approximation in 
practice.  
11 Note that 𝐐𝐐 in these formulas depends upon whether a HETOP, HOMOP, or PHOP model is being used, as defined 
in (A16). 

 

𝑣𝑣𝑔𝑔ℎ∗ = 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇̂𝜇𝑔𝑔∗ , 𝜇̂𝜇ℎ∗ � 

= 𝐶𝐶𝐶𝐶𝐶𝐶 �
𝜇̂𝜇𝑔𝑔′

𝜎𝜎�′
,
𝜇̂𝜇ℎ′

𝜎𝜎�′�
 

≈
1
𝜎𝜎′2

𝑣𝑣𝑔𝑔ℎ′ −
𝜇𝜇𝑔𝑔′

𝜎𝜎′3
𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′, 𝜇̂𝜇ℎ′ ) −

𝜇𝜇ℎ′

𝜎𝜎′3
𝐶𝐶𝐶𝐶𝐶𝐶�𝜇̂𝜇𝑔𝑔′ ,𝜎𝜎�′� + 𝜇̂𝜇𝑔𝑔′ 𝜇̂𝜇ℎ′ 𝑉𝑉𝑉𝑉𝑉𝑉 �

1
𝜎𝜎′
� 

≈
1
𝜎𝜎′2 �

𝑣𝑣𝑔𝑔ℎ′ − 𝜇𝜇𝑔𝑔∗ 𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′, 𝜇̂𝜇ℎ′ )− 𝜇𝜇ℎ∗𝐶𝐶𝐶𝐶𝐶𝐶�𝜇̂𝜇𝑔𝑔′ ,𝜎𝜎�′� + 𝜇𝜇𝑔𝑔∗ 𝜇𝜇ℎ∗𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′)�. 

(B1) 

 

𝑟𝑟ℎ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′, 𝜇̂𝜇ℎ′ ) 

=
1

2𝜎𝜎′
𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′2, 𝜇̂𝜇ℎ′ ) 

=
1

2𝜎𝜎′
𝐶𝐶𝐶𝐶𝐶𝐶�𝐏𝐏𝐌𝐌� ′∘2 + 𝐐𝐐𝚺𝚺�′∘2, 𝜇̂𝜇ℎ′ � 

=
1
𝜎𝜎′
𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐕𝐕′𝐈𝐈ℎ +

1
𝜎𝜎′
𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐙𝐙′𝑡𝑡𝐈𝐈ℎ. 

(B2) 

 
𝐑𝐑 =

1
𝜎𝜎′
𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐕𝐕′ +

1
𝜎𝜎′
𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐙𝐙′𝑡𝑡 

= 𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌∗)]𝐕𝐕′ + 𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺∗)]𝐙𝐙′𝑡𝑡. 

(B3) 
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Now we have  

Similarly, assuming that 𝐸𝐸�𝚺𝚺�′� = 𝚺𝚺′ and 𝐸𝐸[𝜎𝜎�′] = 𝜎𝜎′, the 𝑔𝑔,ℎ element of the covariance matrix 

𝐖𝐖∗ of the 𝜎𝜎�𝑔𝑔∗’s is  

Define 

Then define the 1 × 𝐺𝐺 vector 𝐓𝐓, with elements 𝑡𝑡ℎ, as 

We then have 

 𝐕𝐕∗ ≈
1
𝜎𝜎′2

[𝐕𝐕′ − (𝐌𝐌∗𝐑𝐑 + 𝐑𝐑𝑡𝑡𝐌𝐌∗𝑡𝑡) +𝐌𝐌∗𝐌𝐌∗𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′)]. (B4) 

 

𝑤𝑤𝑔𝑔ℎ∗ = 𝐶𝐶𝐶𝐶𝐶𝐶�𝜎𝜎�𝑔𝑔∗,𝜎𝜎�ℎ∗� 

= 𝐶𝐶𝐶𝐶𝐶𝐶 �
𝜎𝜎�𝑔𝑔′

𝜎𝜎�′
,
𝜎𝜎�ℎ′

𝜎𝜎�′�
 

≈
1
𝜎𝜎′2

𝑤𝑤𝑔𝑔ℎ′ −
𝜎𝜎𝑔𝑔′

𝜎𝜎′3
𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′,𝜎𝜎�ℎ′ )−

𝜎𝜎ℎ′

𝜎𝜎′3
𝐶𝐶𝐶𝐶𝐶𝐶�𝜎𝜎�𝑔𝑔′ ,𝜎𝜎�′� + 𝜎𝜎�𝑔𝑔′𝜎𝜎�ℎ′𝑉𝑉𝑉𝑉𝑉𝑉 �

1
𝜎𝜎′
� 

≈
1
𝜎𝜎′2 �

𝑤𝑤𝑔𝑔ℎ′ − 𝜎𝜎𝑔𝑔∗𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′,𝜎𝜎�ℎ′ )− 𝜎𝜎ℎ∗𝐶𝐶𝐶𝐶𝐶𝐶�𝜎𝜎�𝑔𝑔′ ,𝜎𝜎�′� + 𝜎𝜎𝑔𝑔∗𝜎𝜎ℎ∗𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′)�. 

(B5) 

 

𝑡𝑡ℎ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′,𝜎𝜎�ℎ′ ) 

=
1

2𝜎𝜎′
𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′2,𝜎𝜎�ℎ′ ) 

=
1

2𝜎𝜎′
𝐶𝐶𝐶𝐶𝐶𝐶�𝐏𝐏𝐌𝐌� ′∘2 + 𝐐𝐐𝚺𝚺�′∘2,𝜎𝜎�ℎ′ � 

=
1
𝜎𝜎′
𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐙𝐙′𝐈𝐈ℎ +

1
𝜎𝜎′
𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐖𝐖′𝐈𝐈ℎ. 

(B6) 

 
𝐓𝐓 =

1
𝜎𝜎′
𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐙𝐙′ +

1
𝜎𝜎′
𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐖𝐖′ 

= 𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌∗)]𝐙𝐙′ + 𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺∗)]𝐖𝐖′. 

(B7) 

 𝐖𝐖∗ ≈
1
𝜎𝜎′2

[𝐖𝐖′ − (𝚺𝚺∗𝐓𝐓 + 𝐓𝐓𝑡𝑡𝚺𝚺∗𝑡𝑡) + 𝚺𝚺∗𝚺𝚺∗𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′)]. (B8) 
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Finally, the element 𝑧𝑧𝑔𝑔ℎ∗  of the matrix 𝐙𝐙∗ is  

We then have 

Expressions (B4), (B8) and (B10) require 𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′). Note first, that we can derive12 the sampling 

variance of 𝜎𝜎�′2 as 

Then, by the Delta method, 

                                                           
12 Note that if 𝐀𝐀 and 𝐁𝐁 are 1 × 𝐺𝐺 scalar vectors, 𝐃𝐃 and 𝐄𝐄 are 𝐺𝐺 × 𝐺𝐺 scalar matrices; and 𝐗𝐗� and 𝐘𝐘� are 𝐺𝐺 × 1 column 
vectors of random variables, then  

𝐶𝐶𝐶𝐶𝐶𝐶 �𝐀𝐀�𝐃𝐃𝐗𝐗��∘2,𝐁𝐁�𝐄𝐄𝐘𝐘��∘2� ≈ 4𝐀𝐀[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐗𝐗)][𝐃𝐃𝑡𝑡𝐃𝐃]𝐂𝐂[𝐄𝐄𝐄𝐄𝑡𝑡][𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐘𝐘)]𝐁𝐁𝑡𝑡 , 
where 𝐂𝐂 is the 𝐺𝐺 × 𝐺𝐺 covariance matrix of 𝐗𝐗� and 𝐘𝐘�.  

 

𝑧𝑧𝑔𝑔ℎ∗ = 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇̂𝜇𝑔𝑔∗ ,𝜎𝜎�ℎ∗� 

= 𝐶𝐶𝐶𝐶𝐶𝐶 �
𝜇̂𝜇𝑔𝑔′

𝜎𝜎�′
,
𝜎𝜎�ℎ′

𝜎𝜎�′�
 

≈
1
𝜎𝜎′2

𝑧𝑧𝑔𝑔ℎ′ −
𝜇𝜇𝑔𝑔′

𝜎𝜎′3
𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′,𝜎𝜎�ℎ′ ) −

𝜎𝜎ℎ′

𝜎𝜎′3
𝐶𝐶𝐶𝐶𝐶𝐶�𝜇̂𝜇𝑔𝑔′ ,𝜎𝜎�′� + 𝜇̂𝜇𝑔𝑔′ 𝜎𝜎�ℎ′𝑉𝑉𝑉𝑉𝑉𝑉 �

1
𝜎𝜎′
� 

≈
1
𝜎𝜎′2 �

𝑧𝑧𝑔𝑔ℎ′ − 𝜇𝜇𝑔𝑔∗ 𝐶𝐶𝐶𝐶𝐶𝐶(𝜎𝜎�′,𝜎𝜎�ℎ′ )− 𝜎𝜎ℎ∗𝐶𝐶𝐶𝐶𝐶𝐶�𝜇̂𝜇𝑔𝑔′ ,𝜎𝜎�′� + 𝜇𝜇𝑔𝑔∗ 𝜎𝜎ℎ∗𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′)� 

=
1
𝜎𝜎′2 �

𝑧𝑧𝑔𝑔ℎ′ − 𝜇𝜇𝑔𝑔∗ 𝑡𝑡ℎ − 𝜎𝜎ℎ∗𝑟𝑟𝑔𝑔 + 𝜇𝜇𝑔𝑔∗ 𝜎𝜎ℎ∗𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′)�. 

(B9) 

 𝐙𝐙∗ ≈
1
𝜎𝜎′2

[𝐙𝐙′ − (𝐌𝐌∗𝐓𝐓 + 𝐑𝐑𝑡𝑡𝚺𝚺∗𝑡𝑡) +𝐌𝐌∗𝚺𝚺∗𝑡𝑡𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′)]. (B10) 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′2) = 𝑉𝑉𝑉𝑉𝑉𝑉�𝐏𝐏𝐌𝐌� ′∘2 +𝐐𝐐𝚺𝚺�′∘2� 

=  4𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐕𝐕′[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐏𝐏𝑡𝑡 + 4𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐖𝐖′[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐐𝐐𝑡𝑡

+ 8𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐙𝐙′[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐐𝐐𝑡𝑡. 

(B11) 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′) ≈

1
4𝜎𝜎′2

𝑉𝑉𝑉𝑉𝑉𝑉(𝜎𝜎�′2) 

≈
1
𝜎𝜎′2

[𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐕𝐕′[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐏𝐏𝑡𝑡 + 𝐐𝐐[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐖𝐖′[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐐𝐐𝑡𝑡

+ 2𝐏𝐏[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐌𝐌′)]𝐙𝐙′[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝚺𝚺′)]𝐐𝐐𝑡𝑡]. 

(B12) 
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We substitute (B12) into (B4), (B8), and (B10) to obtain expressions for 𝐕𝐕∗, 𝐖𝐖∗, and 𝐙𝐙∗. To estimate 𝐕𝐕∗, 

𝐖𝐖∗, and 𝐙𝐙∗, we replace the relevant terms in the resulting expressions by their estimated values.  
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Online Appendix A: Matrix Conversions 

The maximization of Equation (4) yields estimates of 𝐌𝐌′, 𝚪𝚪′, and 𝐂𝐂′, subject to a set of linear 

constraints that define their metric. Although we suggest the constraints 𝐏𝐏𝐏𝐏′ = 𝟎𝟎 and 𝐏𝐏𝐏𝐏′ = 𝟎𝟎, there 

may be cases where the model does not converge under these constraints, or where other constraints 

are preferable. In such cases, before using Equation (6) to estimate 𝐌𝐌∗ and 𝚺𝚺∗, it is necessary to convert 

the parameter estimates and their covariance matrix to the metric in which 𝐏𝐏𝐌𝐌� ′ = 𝟎𝟎 and 𝐏𝐏𝚪𝚪� ′ = 𝟎𝟎. We 

do this as follows. 

First, we will use a “double prime” subscript to denote estimates subject to some arbitrary set of 

constraints. So 𝐌𝐌� ′′, 𝚪𝚪� ′′, and 𝐂𝐂�′′ are the estimated parameters of the model. The covariance matrices of 

𝐌𝐌� ′′ and 𝚪𝚪� ′′ are denoted 𝐕𝐕′′ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐌𝐌� ′′,𝐌𝐌� ′′), 𝚲𝚲′′ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐌𝐌� ′′,𝚪𝚪� ′′), and 𝛀𝛀′′ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝚪𝚪� ′′,𝚪𝚪� ′′). We want to 

convert these to the metric (denoted by a “single prime” superscript) in which 𝐏𝐏𝐌𝐌� ′ = 𝟎𝟎 and 𝐏𝐏𝚪𝚪� ′ = 𝟎𝟎. To 

do so, we define 𝚷𝚷 = 𝐈𝐈 − 𝟏𝟏𝑡𝑡𝐏𝐏 and 𝜅𝜅 = 1 + 1
2
𝑣𝑣𝑣𝑣𝑣𝑣�𝐏𝐏𝚪𝚪� ′′� = 1 + 1

2
𝐏𝐏 𝛀𝛀�′′𝐏𝐏𝑡𝑡. We then construct: 

Note that the vector of group standard deviations in the “double prime” metric will be 𝚺𝚺�′′ = exp�𝚪𝚪� ′′� 

(where exp(𝐗𝐗) denotes the matrix whose elements are the exponentiated values of the corresponding 

elements of the matrix 𝐗𝐗). The standard deviations in the new “single prime” metric will be 𝚺𝚺�′ =

exp�𝚪𝚪� ′� = exp�𝚷𝚷𝚪𝚪� ′′� = 𝑒𝑒�−𝐏𝐏𝚪𝚪�′′�𝚺𝚺′′. So the transformations in (A1) ensure that the group means and 

standard deviations, as well as the estimated thresholds in 𝐂𝐂 are all scaled by the same factor, 𝑒𝑒�−𝐏𝐏𝚪𝚪�′′�. It 

is straightforward to show that the transformations also ensure that 𝐏𝐏𝐌𝐌� ′ = 𝟎𝟎 and 𝐏𝐏𝚪𝚪� ′ = 𝟎𝟎 (because 

𝐏𝐏𝐏𝐏 = 𝐏𝐏𝐈𝐈 − 𝐏𝐏𝟏𝟏𝑡𝑡𝐏𝐏 = 𝐏𝐏 − 𝐏𝐏 = 𝟎𝟎). Thus, these transformations represent a linear transformation of the 

 

𝐌𝐌� ′ = 𝑒𝑒�−𝐏𝐏𝚪𝚪�′′��𝚷𝚷𝐌𝐌� ′′� 

𝚪𝚪� ′ = 𝚷𝚷𝚪𝚪�′′ 

𝐂𝐂�′ = 𝑒𝑒�−𝐏𝐏𝚪𝚪�′′��𝐂𝐂�′′ − 𝟏𝟏𝑡𝑡𝐏𝐏𝐌𝐌� ′′� 

 

(A1) 
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“double prime” metric that meets the constraints of the “single prime metric.”13  

 Once 𝐌𝐌� ′′ and 𝚪𝚪� ′′ are transformed, we must also determine the corresponding transformations of 

the 𝐕𝐕′′, 𝚲𝚲′′, and 𝛀𝛀′′ covariance matrices. Let  𝚷𝚷𝑔𝑔 denote the 𝑔𝑔𝑡𝑡ℎ row of 𝚷𝚷. Note that 𝚷𝚷𝑔𝑔𝐌𝐌� ′′ = 𝜇̂𝜇𝑔𝑔′ ∙

𝑒𝑒�𝐏𝐏𝚪𝚪�′′�.  

First, we want to compute the 𝑔𝑔, ℎ element of 𝐕𝐕′: 

We assume that 𝐸𝐸�𝐌𝐌� ′′� = 𝐌𝐌′′, 𝐸𝐸�𝚪𝚪� ′′� = 𝚪𝚪′′, and use the Taylor series approximations below:  

where 𝜅𝜅 = 1 + 1
2
𝑣𝑣𝑣𝑣𝑣𝑣�𝐏𝐏𝚪𝚪� ′′� = 1 + 1

2
𝐏𝐏𝛀𝛀′′𝐏𝐏𝑡𝑡. For compactness of notation, denote 𝑎𝑎� = 𝚷𝚷𝑔𝑔𝐌𝐌� ′′; 𝑏𝑏� =

𝚷𝚷ℎ𝐌𝐌� ′′; 𝑐̂𝑐 = 𝑒𝑒�𝐏𝐏𝚪𝚪�′′�. Then  

                                                           
13 Note that if 𝐌𝐌′′, 𝚪𝚪′′, and 𝐂𝐂′′ are estimated using the constraints that 𝐏𝐏𝐌𝐌� ′′ = 𝟎𝟎 and 𝐏𝐏𝚪𝚪� ′′ = 𝟎𝟎, then the 
transformations in (A1) will leave them unchanged.  

 𝑣𝑣𝑔𝑔ℎ′ = 𝑐𝑐𝑐𝑐𝑐𝑐�𝜇̂𝜇𝑔𝑔′ , 𝜇̂𝜇ℎ′ � = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝚷𝚷𝑔𝑔𝐌𝐌� ′′
𝑒𝑒�𝐏𝐏𝚪𝚪�′′�

,
𝚷𝚷ℎ𝐌𝐌� ′′
𝑒𝑒�𝐏𝐏𝚪𝚪�′′�

� . 

 
(A2) 

 

𝐸𝐸�𝑒𝑒�𝐏𝐏𝚪𝚪�′′�� ≈ 𝐸𝐸 �𝑒𝑒�𝐸𝐸�𝐏𝐏𝚪𝚪�′′�� + �𝐏𝐏𝚪𝚪� ′′ − 𝐸𝐸�𝐏𝐏𝚪𝚪� ′′��𝑒𝑒�𝐸𝐸�𝐏𝐏𝚪𝚪�′′�� +
1
2 �
𝐏𝐏𝚪𝚪� ′′ − 𝐸𝐸�𝐏𝐏𝚪𝚪� ′′��2𝑒𝑒�𝐸𝐸�𝐏𝐏𝚪𝚪�′′�� + ⋯� 

≈ 𝑒𝑒�𝐸𝐸�𝐏𝐏𝚪𝚪′′�� �1 +
1
2
𝑣𝑣𝑣𝑣𝑣𝑣�𝐏𝐏𝚪𝚪� ′′�� 

≈ 𝜅𝜅𝑒𝑒�𝐏𝐏𝚪𝚪′′�; 

𝐸𝐸�𝑒𝑒�−𝐏𝐏𝚪𝚪�′′�� ≈ 𝐸𝐸 �𝑒𝑒�𝐸𝐸�−𝐏𝐏𝚪𝚪�′′�� − �𝐏𝐏𝚪𝚪� ′′ − 𝐸𝐸�𝐏𝐏𝚪𝚪� ′′��𝑒𝑒�𝐸𝐸�−𝐏𝐏𝚪𝚪�′′�� +
1
2 �
𝐏𝐏𝚪𝚪� ′′ − 𝐸𝐸�𝐏𝐏𝚪𝚪� ′′��2𝑒𝑒�𝐸𝐸�−𝐏𝐏𝚪𝚪�′′�� +⋯� 

≈ 𝑒𝑒�𝐸𝐸�−𝐏𝐏𝚪𝚪′′�� �1 +
1
2
𝑣𝑣𝑣𝑣𝑣𝑣�𝐏𝐏𝚪𝚪� ′′�� 

≈ 𝜅𝜅𝑒𝑒�−𝐏𝐏𝚪𝚪′′�, 

(A3) 
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Therefore, the full matrix 𝐕𝐕′ is: 

Similar derivations yield 

and 

Finally, we obtain estimates of 𝐕𝐕′, 𝚲𝚲′, and 𝛀𝛀′ by replacing the terms in (A5), (A6), and (A7) with their 

sample estimates. Note that 𝜅𝜅 = 1 + 1
2
𝑣𝑣𝑣𝑣𝑣𝑣�𝐏𝐏𝚪𝚪� ′′� = 1 + 1

2
𝐏𝐏𝛀𝛀′′𝐏𝐏𝑡𝑡 ≈ 1 when sample sizes are large 

(because then 𝑣𝑣𝑣𝑣𝑣𝑣�𝐏𝐏𝚪𝚪� ′′� is very small); in such cases it may be convenient to assume 𝜅𝜅 = 1 in Equations 

(A5) and (A6).  

 Once we have 𝐌𝐌� ′, 𝚪𝚪� ′, 𝐕𝐕�′, 𝚲𝚲�′, and 𝛀𝛀�′, we construct 𝚺𝚺�′, the vector of the group standard 

deviations in the “single prime” metric, as well as the covariance matrices 𝐙𝐙�′ = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐌𝐌� ′,𝚺𝚺�′), and 𝐖𝐖� ′ =

𝐶𝐶𝐶𝐶𝐶𝐶(𝚺𝚺�′,𝚺𝚺�′). The vector of group standard deviations is simply the vector of exponentiated elements of 

𝑣𝑣𝑔𝑔ℎ = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑎𝑎�
𝑐̂𝑐

,
𝑏𝑏�
𝑐̂𝑐�

 

≈ 𝐸𝐸 �
1
𝑐̂𝑐�
2

cov�𝑎𝑎�, 𝑏𝑏�� + E �
1
𝑐̂𝑐�

E[𝑎𝑎�]cov �
1
𝑐̂𝑐

, 𝑏𝑏�� + E �
1
𝑐̂𝑐�

E�𝑏𝑏��cov �𝑎𝑎�,
1
𝑐̂𝑐
� + E[𝑎𝑎�]E�𝑏𝑏��cov �

1
𝑐̂𝑐

,
1
𝑐̂𝑐
� 

≈ 𝐸𝐸 �
1
𝑐̂𝑐�
2

cov�𝑎𝑎�, 𝑏𝑏�� − E �
1
𝑐̂𝑐�

E[𝑐̂𝑐]−2E[𝑎𝑎�]cov�𝑐̂𝑐, 𝑏𝑏�� − E �
1
𝑐̂𝑐�

E[𝑐̂𝑐]−2E�𝑏𝑏��cov(𝑎𝑎�, 𝑐̂𝑐)

+ E[𝑐̂𝑐]−4E[𝑎𝑎�]E�𝑏𝑏��cov(𝑐̂𝑐, 𝑐̂𝑐) 

≈ �
𝜅𝜅2

𝑐𝑐2
� cov�𝑎𝑎�, 𝑏𝑏�� − �

𝑎𝑎
𝜅𝜅𝑐𝑐3�

cov�𝑐̂𝑐,𝑏𝑏�� − �
𝑏𝑏
𝜅𝜅𝑐𝑐3�

cov(𝑎𝑎�, 𝑐̂𝑐) + �
𝑎𝑎𝑎𝑎
𝜅𝜅4𝑐𝑐4�

var(𝑐̂𝑐) 

≈ �
𝜅𝜅2

𝑐𝑐2
� cov�𝑎𝑎�, 𝑏𝑏�� − �

𝑎𝑎
𝜅𝜅𝑐𝑐2�

cov�𝐏𝐏𝚪𝚪� ′′,𝑏𝑏�� − �
𝑎𝑎
𝜅𝜅𝑐𝑐2�

cov�𝑎𝑎�,𝐏𝐏𝚪𝚪� ′′� + �
𝑎𝑎𝑎𝑎
𝜅𝜅4𝑐𝑐2�

var�𝐏𝐏𝚪𝚪� ′′� 

≈
1
c2 �

𝜅𝜅2𝚷𝚷𝑔𝑔𝐕𝐕′′𝚷𝚷ℎ
𝑡𝑡 −

𝑎𝑎
𝜅𝜅
𝐏𝐏𝚲𝚲′′𝑡𝑡𝚷𝚷ℎ

𝑡𝑡 −
𝑏𝑏
𝜅𝜅
𝚷𝚷𝑔𝑔𝚲𝚲′′𝐏𝐏𝑡𝑡 +

𝑎𝑎𝑎𝑎
𝜅𝜅4
𝐏𝐏𝛀𝛀′′𝐏𝐏𝑡𝑡� 

 

(A4) 

𝐕𝐕′ = 𝑒𝑒�−2𝐏𝐏𝚪𝚪′′�[𝜅𝜅2𝚷𝚷 𝐕𝐕′′𝚷𝚷𝑡𝑡 − 𝜅𝜅−1(𝚷𝚷𝐌𝐌′′𝐏𝐏𝚲𝚲′′𝑡𝑡𝚷𝚷𝑡𝑡 + 𝚷𝚷𝚲𝚲′′𝐏𝐏𝑡𝑡𝐌𝐌′′𝑡𝑡𝚷𝚷𝑡𝑡) + 𝜅𝜅−4𝚷𝚷𝐌𝐌′′𝐌𝐌′′𝑡𝑡𝚷𝚷𝑡𝑡𝐏𝐏𝛀𝛀′′𝐏𝐏𝑡𝑡]. (A5) 

 𝚲𝚲′ = 𝑒𝑒�−𝐏𝐏𝚪𝚪′′�[𝜅𝜅𝚷𝚷𝚲𝚲′′𝚷𝚷𝑡𝑡 − 𝜅𝜅−2𝚷𝚷𝐌𝐌′′𝐏𝐏𝛀𝛀′′𝚷𝚷𝑡𝑡] (A6) 

 𝛀𝛀′ = 𝚷𝚷𝛀𝛀′′𝚷𝚷𝑡𝑡. (A7) 
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𝚪𝚪� ′: 𝚺𝚺�′ = exp�𝚪𝚪� ′�. The covariance matrices are then estimated using the Delta method: 

and 

  

 

𝐙𝐙�′ = 𝐶𝐶𝐶𝐶𝐶𝐶�𝐌𝐌� ′, exp�𝚪𝚪� ′�� 

≈ 𝐶𝐶𝐶𝐶𝐶𝐶�𝐌𝐌� ′,𝚪𝚪� ′��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝚺𝚺�′�� 

= 𝚲𝚲�′�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝚺𝚺�′��, 

 

(A8) 

 

𝐖𝐖� ′ = 𝐶𝐶𝐶𝐶𝐶𝐶� exp�𝚪𝚪� ′� , exp�𝚪𝚪� ′�� 

≈ �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝚺𝚺�′��𝐶𝐶𝐶𝐶𝐶𝐶�𝚪𝚪� ′,𝚪𝚪� ′��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝚺𝚺�′�� 

= �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝚺𝚺�′��𝛀𝛀�′�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝚺𝚺�′��. 
(A9) 
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Online Appendix B: Standard Errors of Estimated Between-Group Gaps 

Equation (10) defines the estimated gap between groups 𝑔𝑔 and ℎ as 𝐷𝐷�𝑔𝑔ℎ = 𝑑̂𝑑𝑔𝑔ℎ∗ /𝑠̂𝑠𝑔𝑔ℎ∗ , where 𝑑𝑑𝑔𝑔ℎ∗  

and 𝑠𝑠𝑔𝑔ℎ∗  are, respectively, the difference in the mean value of 𝑦𝑦∗ and the pooled standard deviation of 𝑦𝑦∗ 

in groups 𝑔𝑔 and ℎ. Let 𝑣𝑣𝑔𝑔ℎ∗  and 𝑤𝑤𝑔𝑔ℎ∗  be the 𝑔𝑔, ℎ elements of 𝐕𝐕∗ and 𝐖𝐖∗, respectively. Then the sampling 

variance of 𝑑̂𝑑𝑔𝑔ℎ∗  will be given by  

Likewise, the sampling variance of the pooled standard deviation 𝑠̂𝑠𝑔𝑔ℎ∗  will be  

If we assume that the sampling errors in 𝑑̂𝑑𝑔𝑔ℎ∗  and 𝑠̂𝑠𝑔𝑔ℎ∗  are independent (which is not strictly true, 

since the estimated means and variances on which they depend are jointly estimated, but which will 

generally be approximately true in modestly large samples), the sampling variance of the gap 𝐷𝐷�𝑔𝑔ℎ∗  can 

then be approximated as (Goodman, 1960): 

 𝛿𝛿𝑔𝑔ℎ∗ = 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑̂𝑑𝑔𝑔ℎ∗ � = 𝑣𝑣𝑔𝑔𝑔𝑔∗ + 𝑣𝑣ℎℎ∗ − 2𝑣𝑣𝑔𝑔ℎ∗ . (B1) 

 

𝜂𝜂𝑔𝑔ℎ∗ = 𝑣𝑣𝑣𝑣𝑣𝑣�𝑠̂𝑠𝑔𝑔ℎ∗ � ≈
1

16𝑠𝑠𝑔𝑔ℎ∗2
�4𝜎𝜎𝑔𝑔∗2𝑤𝑤𝑔𝑔𝑔𝑔∗ + 4𝜎𝜎ℎ∗2𝑤𝑤ℎℎ∗ + 8𝜎𝜎𝑔𝑔∗𝜎𝜎ℎ∗𝑤𝑤𝑔𝑔ℎ∗ � 

=
1

4𝑠𝑠𝑔𝑔ℎ∗2
�𝜎𝜎𝑔𝑔∗2𝑤𝑤𝑔𝑔𝑔𝑔∗ + 𝜎𝜎ℎ∗2𝑤𝑤ℎℎ∗ + 2𝜎𝜎𝑔𝑔∗𝜎𝜎ℎ∗𝑤𝑤𝑔𝑔ℎ∗ �. 

(B2) 

 

𝑣𝑣𝑣𝑣𝑣𝑣�𝐷𝐷�𝑔𝑔ℎ∗ � = 𝑣𝑣𝑣𝑣𝑣𝑣 �
𝑑̂𝑑𝑔𝑔ℎ∗

𝑠̂𝑠𝑔𝑔ℎ∗
� 

≈
1
𝑠𝑠𝑔𝑔ℎ∗2

𝑣𝑣𝑣𝑣𝑣𝑣�𝑑̂𝑑𝑔𝑔ℎ∗ � + 𝑑𝑑𝑔𝑔ℎ∗2 𝑣𝑣𝑣𝑣𝑣𝑣 �
1
𝑠̂𝑠𝑔𝑔ℎ∗

�+ 𝑣𝑣𝑣𝑣𝑣𝑣�𝑑̂𝑑𝑔𝑔ℎ∗ � ∙ 𝑣𝑣𝑣𝑣𝑣𝑣 �
1
𝑠̂𝑠𝑔𝑔ℎ∗

� 

≈
𝛿𝛿𝑔𝑔ℎ∗

𝑠𝑠𝑔𝑔ℎ∗2
+
𝑑𝑑𝑔𝑔ℎ∗2 𝜂𝜂𝑔𝑔ℎ∗

𝑠𝑠𝑔𝑔ℎ∗4
+
𝛿𝛿𝑔𝑔ℎ∗ 𝜂𝜂𝑔𝑔ℎ∗

𝑠𝑠𝑔𝑔ℎ∗4
 

=
𝛿𝛿𝑔𝑔ℎ∗

𝑠𝑠𝑔𝑔ℎ∗2
�1 + 𝐷𝐷𝑔𝑔ℎ∗2

𝜂𝜂𝑔𝑔ℎ∗

𝛿𝛿𝑔𝑔ℎ∗
+
𝜂𝜂𝑔𝑔ℎ∗

𝑠𝑠𝑔𝑔ℎ∗2
�. 

(B3) 
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Although it would seem that we can then estimate 𝑣𝑣𝑣𝑣𝑣𝑣�𝐷𝐷�𝑔𝑔ℎ∗ � by using the relevant terms from 𝐕𝐕�∗, 𝐖𝐖� ∗, 

𝚺𝚺�∗, 𝐒𝐒�, and 𝐆𝐆� in (B3), Goodman (1960) notes that an estimator of 𝑣𝑣𝑣𝑣𝑣𝑣�𝐷𝐷�𝑔𝑔ℎ∗ � must account for the fact that 

the expected values of 1
𝑠̂𝑠𝑔𝑔ℎ
∗2  and 𝑑̂𝑑𝑔𝑔ℎ∗2  will be larger than the desired values in (B3). Taking this into account, 

a better estimate of 𝑣𝑣𝑣𝑣𝑣𝑣�𝐷𝐷�𝑔𝑔ℎ∗ � will be  

In simulations (not shown), we find that (B4) produces accurate standard errors across the range 

of conditions in our simulations, with the exception of cases where sample sizes are small (𝑛𝑛 = 25) and 

the cutscores are poorly located; in those cases, (B4) produced standard errors that were slightly too 

large, on average. 

  

 𝑣𝑣𝑣𝑣𝑣𝑣� �𝐷𝐷�𝑔𝑔ℎ∗ � ≈
𝛿𝛿𝑔𝑔ℎ∗

𝑠̂𝑠𝑔𝑔ℎ∗2
�1 + 𝐷𝐷�𝑔𝑔ℎ∗2

𝜂̂𝜂𝑔𝑔ℎ∗

𝛿𝛿𝑔𝑔ℎ∗
−
𝜂̂𝜂𝑔𝑔ℎ∗

𝑠̂𝑠𝑔𝑔ℎ∗2
�. (B4) 
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Online Appendix C: Detailed Simulation Results Tables 

 
Table C1: Bias in Estimated Means, by ICC, CV, Location of Cutscores, Sample Sizes, and Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Low Mid Wide Many Skewed Mid Wide Many 
           
HETOP 0.0 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
    400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
HOMOP 0.0 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3 25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
    400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 
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Table C2: RMSE of Estimated Means, by ICC, CV, Location of Cutscores, Sample Sizes, and Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 0.2502 0.2129 0.2244 0.2061 0.2746 0.2031 0.2161 0.1910 
  50 0.1712 0.1492 0.1557 0.1444 0.1783 0.1411 0.1456 0.1328 
  100 0.1195 0.1049 0.1092 0.1012 0.1238 0.0995 0.1020 0.0933 
  400 0.0592 0.0522 0.0542 0.0502 0.0607 0.0494 0.0506 0.0464 
 0.3 25 0.2514 0.2141 0.2267 0.2071 0.2781 0.2035 0.2212 0.1909 
  50 0.1710 0.1497 0.1576 0.1445 0.1819 0.1413 0.1489 0.1331 
  100 0.1195 0.1054 0.1096 0.1013 0.1241 0.0997 0.1026 0.0935 
    400 0.0590 0.0521 0.0540 0.0500 0.0605 0.0493 0.0505 0.0463 
HOMOP 0.0 25 0.2214 0.2112 0.2189 0.2034 0.2113 0.1960 0.2051 0.1881 
  50 0.1552 0.1482 0.1541 0.1433 0.1454 0.1372 0.1435 0.1317 
  100 0.1094 0.1042 0.1087 0.1008 0.1025 0.0970 0.1014 0.0929 
  400 0.0545 0.0519 0.0541 0.0501 0.0511 0.0482 0.0506 0.0463 
 0.3 25 0.2285 0.2124 0.2194 0.2045 0.2223 0.1977 0.2042 0.1881 
  50 0.1644 0.1492 0.1545 0.1435 0.1587 0.1398 0.1436 0.1321 
  100 0.1217 0.1057 0.1087 0.1010 0.1204 0.1010 0.1013 0.0934 
    400 0.0764 0.0540 0.0540 0.0503 0.0816 0.0558 0.0505 0.0471 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 
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Table C3: Ratio of Median Estimated Standard Error to Empirical Standard Error for Estimated Means, by 
ICC, CV, Location of Cutscores, Sample Sizes, and Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 0.9033 0.9482 1.1378 0.9686 0.9238 0.9381 1.2098 0.9615 
  50 0.9518 0.9742 0.9914 0.9809 0.9525 0.9721 0.9979 0.9821 
  100 0.9756 0.9879 0.9904 0.9907 0.9700 0.9818 0.9886 0.9901 
  400 0.9919 0.9980 0.9971 0.9990 0.9915 0.9956 0.9955 0.9970 
 0.3 25 0.9044 0.9467 1.7144 0.9655 0.9609 0.9411 2.3691 0.9632 
  50 0.9556 0.9739 1.0797 0.9806 0.9544 0.9737 1.1044 0.9831 
  100 0.9774 0.9861 0.9970 0.9899 0.9732 0.9813 1.0075 0.9894 
    400 0.9958 1.0030 1.0002 1.0035 0.9989 0.9980 1.0008 0.9995 
HOMOP 0.0 25 0.9740 0.9807 0.9855 0.9847 0.9591 0.9762 0.9791 0.9789 
  50 0.9854 0.9897 0.9906 0.9888 0.9852 0.9889 0.9914 0.9906 
  100 0.9903 0.9955 0.9938 0.9945 0.9902 0.9909 0.9934 0.9944 
  400 0.9955 1.0000 0.9979 0.9998 0.9953 0.9975 0.9967 0.9982 
 0.3 25 0.9768 0.9889 1.0027 1.0031 0.9618 0.9864 1.0032 1.0030 
  50 0.9912 0.9998 1.0084 1.0118 0.9918 1.0017 1.0132 1.0144 
  100 0.9994 1.0030 1.0119 1.0161 0.9985 1.0016 1.0164 1.0168 
    400 1.0056 1.0147 1.0215 1.0276 1.0065 1.0096 1.0230 1.0231 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95.  

 

  



 
 

67 

Table C4: Bias in Estimated Standard Deviations, by ICC, CV, Location of Cutscores, Sample Sizes, and Model 
Type 

 
      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 -0.0298 -0.0098 -0.0202 0.0012 -0.0423 -0.0132 -0.0297 -0.0038 
  50 -0.0116 -0.0037 -0.0035 0.0012 -0.0157 -0.0057 -0.0080 -0.0016 
  100 -0.0053 -0.0016 -0.0010 0.0008 -0.0075 -0.0026 -0.0027 -0.0006 
  400 -0.0011 -0.0003 -0.0001 0.0003 -0.0016 -0.0005 -0.0005 0.0000 
 0.3 25 -0.0332 -0.0122 -0.0333 -0.0002 -0.0454 -0.0142 -0.0385 -0.0041 
  50 -0.0129 -0.0049 -0.0112 0.0004 -0.0172 -0.0058 -0.0144 -0.0015 
  100 -0.0058 -0.0021 -0.0028 0.0004 -0.0076 -0.0031 -0.0051 -0.0009 
    400 -0.0014 -0.0005 -0.0004 0.0001 -0.0016 -0.0006 -0.0006 -0.0001 
HOMOP 0.0 25 -0.0071 -0.0046 -0.0064 -0.0029 -0.0118 -0.0077 -0.0097 -0.0058 
  50 -0.0032 -0.0021 -0.0030 -0.0013 -0.0053 -0.0040 -0.0049 -0.0030 
  100 -0.0016 -0.0010 -0.0015 -0.0006 -0.0027 -0.0019 -0.0024 -0.0014 
  400 -0.0003 -0.0002 -0.0003 -0.0001 -0.0005 -0.0004 -0.0005 -0.0003 
 0.3 25 0.0014 0.0057 0.0046 0.0080 -0.0079 -0.0001 0.0003 0.0036 
  50 0.0054 0.0081 0.0080 0.0095 -0.0006 0.0039 0.0050 0.0065 
  100 0.0072 0.0093 0.0096 0.0103 0.0021 0.0053 0.0073 0.0076 
    400 0.0083 0.0100 0.0107 0.0107 0.0041 0.0069 0.0091 0.0088 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 
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Table C5: RMSE of Estimated Standard Deviations, by ICC, CV, Location of Cutscores, Sample Sizes, and 
Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 0.2684 0.2218 0.2492 0.1686 0.2722 0.2045 0.2402 0.1542 
  50 0.1772 0.1489 0.1373 0.1154 0.1744 0.1379 0.1342 0.1057 
  100 0.1216 0.1033 0.0894 0.0799 0.1196 0.0955 0.0843 0.0737 
  400 0.0591 0.0507 0.0436 0.0394 0.0585 0.0472 0.0410 0.0364 
 0.3 25 0.2727 0.2267 0.2685 0.1706 0.2801 0.2089 0.2495 0.1557 
  50 0.1786 0.1524 0.1631 0.1163 0.1778 0.1405 0.1531 0.1062 
  100 0.1228 0.1048 0.0979 0.0808 0.1207 0.0978 0.0956 0.0744 
    400 0.0602 0.0518 0.0446 0.0399 0.0585 0.0478 0.0419 0.0367 
HOMOP 0.0 25 0.0095 0.0074 0.0089 0.0063 0.0168 0.0121 0.0138 0.0106 
  50 0.0050 0.0042 0.0049 0.0038 0.0084 0.0073 0.0082 0.0066 
  100 0.0030 0.0026 0.0029 0.0024 0.0052 0.0047 0.0052 0.0043 
  400 0.0013 0.0012 0.0013 0.0012 0.0023 0.0021 0.0022 0.0020 
 0.3 25 0.1477 0.1478 0.1478 0.1479 0.1364 0.1357 0.1358 0.1357 
  50 0.1477 0.1478 0.1478 0.1479 0.1356 0.1356 0.1357 0.1357 
  100 0.1478 0.1479 0.1479 0.1479 0.1355 0.1356 0.1357 0.1357 
    400 0.1478 0.1479 0.1480 0.1480 0.1355 0.1356 0.1357 0.1357 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 
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Table C6: Ratio of Median Estimated Standard Error to Empirical Standard Error for Estimated Standard 
Deviations, by ICC, CV, Location of Cutscores, Sample Sizes, and Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 0.8500 0.8821 0.8741 0.9276 0.8721 0.8882 0.9214 0.9355 
  50 0.9236 0.9427 0.9117 0.9605 0.9327 0.9462 0.9028 0.9685 
  100 0.9597 0.9703 0.9714 0.9808 0.9647 0.9731 0.9730 0.9848 
  400 0.9928 0.9943 0.9933 0.9958 0.9910 0.9926 0.9981 0.9984 
 0.3 25 0.8553 0.8883 1.8978 0.9321 0.8812 0.8910 3.8317 0.9369 
  50 0.9309 0.9424 0.9177 0.9645 0.9339 0.9463 0.9605 0.9731 
  100 0.9643 0.9757 0.9368 0.9826 0.9676 0.9682 0.9471 0.9847 
    400 0.9880 0.9921 0.9900 0.9937 0.9972 0.9943 0.9910 0.9981 
HOMOP 0.0 25 1.0947 1.0943 1.1013 1.1020 0.8212 0.9730 0.9905 0.9792 
  50 1.0893 1.0829 1.0851 1.0671 0.9938 0.9906 0.9974 0.9987 
  100 1.0635 1.0403 1.0719 1.0464 0.9940 0.9788 0.9714 0.9990 
  400 0.9831 0.9959 0.9790 0.9751 0.9870 0.9761 1.0111 0.9985 
 0.3 25 1.0531 1.0919 1.0933 1.0758 0.6942 1.0389 0.9951 1.0083 
  50 1.0747 1.0695 1.0763 1.0514 0.9920 1.0286 0.9951 0.9955 
  100 1.0533 1.0394 1.0604 1.0370 0.9765 0.9603 0.9844 0.9561 
    400 1.0233 1.0132 1.0378 1.0159 1.0145 0.9809 0.9860 0.9870 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 

 
 
 
 
  



 
 

70 

Table C7: Bias in Estimated ICC, by ICC, CV, Location of Cutscores, Sample Sizes, and Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 0.0245 0.0092 0.0162 0.0085 0.0336 0.0145 0.0276 0.0157 
  50 0.0104 0.0044 0.0073 0.0037 0.0137 0.0074 0.0124 0.0078 
  100 0.0050 0.0020 0.0035 0.0017 0.0071 0.0036 0.0058 0.0038 
  400 0.0010 0.0004 0.0007 0.0002 0.0014 0.0007 0.0013 0.0008 
 0.3 25 0.0248 0.0091 0.0149 0.0081 0.0309 0.0127 0.0261 0.0145 
  50 0.0104 0.0044 0.0071 0.0037 0.0134 0.0059 0.0122 0.0069 
  100 0.0047 0.0020 0.0034 0.0017 0.0062 0.0035 0.0059 0.0037 
    400 0.0013 0.0006 0.0009 0.0005 0.0012 0.0007 0.0012 0.0007 
HOMOP 0.0 25 0.0142 0.0092 0.0128 0.0061 0.0212 0.0140 0.0175 0.0105 
  50 0.0065 0.0043 0.0060 0.0028 0.0096 0.0072 0.0089 0.0054 
  100 0.0032 0.0020 0.0029 0.0013 0.0049 0.0034 0.0043 0.0026 
  400 0.0006 0.0004 0.0005 0.0002 0.0010 0.0007 0.0010 0.0005 
 0.3 25 0.0194 0.0112 0.0132 0.0067 0.0323 0.0188 0.0181 0.0123 
  50 0.0116 0.0063 0.0065 0.0036 0.0196 0.0116 0.0097 0.0070 
  100 0.0079 0.0038 0.0032 0.0020 0.0147 0.0090 0.0055 0.0049 
    400 0.0057 0.0024 0.0011 0.0011 0.0111 0.0061 0.0021 0.0026 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 
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Table C8: RMSE of Estimated ICC, by ICC, CV, Location of Cutscores, Sample Sizes, and Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 0.0325 0.0149 0.0205 0.0139 0.0514 0.0228 0.0333 0.0224 
  50 0.0139 0.0084 0.0105 0.0079 0.0207 0.0134 0.0171 0.0131 
  100 0.0075 0.0052 0.0060 0.0049 0.0122 0.0086 0.0101 0.0082 
  400 0.0028 0.0023 0.0026 0.0023 0.0047 0.0038 0.0041 0.0036 
 0.3 25 0.0382 0.0152 0.0197 0.0139 0.0495 0.0212 0.0324 0.0214 
  50 0.0140 0.0085 0.0105 0.0080 0.0216 0.0125 0.0172 0.0127 
  100 0.0074 0.0053 0.0060 0.0049 0.0116 0.0088 0.0101 0.0085 
    400 0.0029 0.0024 0.0025 0.0023 0.0049 0.0039 0.0041 0.0037 
HOMOP 0.0 25 0.0187 0.0147 0.0176 0.0124 0.0298 0.0216 0.0247 0.0190 
  50 0.0099 0.0083 0.0095 0.0074 0.0151 0.0131 0.0146 0.0118 
  100 0.0059 0.0052 0.0057 0.0047 0.0094 0.0084 0.0093 0.0077 
  400 0.0025 0.0023 0.0025 0.0023 0.0040 0.0038 0.0040 0.0036 
 0.3 25 0.0234 0.0160 0.0179 0.0130 0.0406 0.0243 0.0250 0.0197 
  50 0.0140 0.0096 0.0100 0.0079 0.0229 0.0157 0.0151 0.0126 
  100 0.0094 0.0062 0.0059 0.0050 0.0169 0.0120 0.0098 0.0090 
    400 0.0062 0.0034 0.0026 0.0024 0.0117 0.0072 0.0045 0.0045 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 
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Table C9: Ratio of Median Estimated Standard Error to Empirical Standard Error for Estimated ICC, by ICC, 
CV, Location of Cutscores, Sample Sizes, and Model Type 
 

      ICC = 0.05 ICC = 0.20 
Model CV N Skewed Mid Wide Many Skewed Mid Wide Many 
HETOP 0.0 25 0.9827 1.1873 1.9220 1.1269 0.9055 1.0452 2.9128 1.0017 
  50 1.1286 1.1223 1.1092 1.0782 1.0558 1.0288 1.1521 1.0111 
  100 1.0934 1.0636 1.0750 1.0535 1.0013 0.9864 0.9774 1.0054 
  400 0.9984 1.0024 0.9796 0.9776 0.9946 0.9840 1.0128 1.0013 
 0.3 25 0.7358 1.1892 3.4893 1.1227 1.0323 1.1090 4.6791 1.0414 
  50 1.1170 1.1238 1.5162 1.0774 1.0330 1.0612 2.1247 1.0085 
  100 1.0760 1.0539 1.0869 1.0490 1.0401 0.9720 1.2346 0.9678 
    400 1.0140 1.0172 1.0398 1.0176 0.9739 0.9775 0.9899 0.9895 
HOMOP 0.0 25 1.0955 1.0947 1.1022 1.1026 0.8303 0.9729 0.9900 0.9788 
  50 1.0895 1.0834 1.0857 1.0676 0.9946 0.9910 0.9978 0.9995 
  100 1.0635 1.0406 1.0720 1.0466 0.9941 0.9788 0.9717 0.9989 
  400 0.9832 0.9959 0.9791 0.9752 0.9871 0.9762 1.0113 0.9987 
 0.3 25 1.0537 1.0931 1.0943 1.0766 0.7105 1.0380 0.9960 1.0082 
  50 1.0749 1.0701 1.0769 1.0518 0.9916 1.0283 0.9956 0.9954 
  100 1.0537 1.0396 1.0609 1.0372 0.9762 0.9602 0.9846 0.9563 
    400 1.0235 1.0133 1.0379 1.0160 1.0144 0.9810 0.9862 0.9870 
NOTE: CV = coefficient of variation; ICC = intraclass correlation coefficient; Skewed = skewed cutscores 5/30/55; 
Mid = mid cutscores 20/50/80; Wide = wide cutscores 5/50/95, Many = many cutscores 5/25/50/75/95. 
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Online Appendix D: Additional Tables for Section 3 

Table D1. Descriptive Statistics for NAEP and State Data. 
 

        Group Sample Size           
      Groups Min p25 Median p75 Max Cut1 Cut2 Cut3 ICC CV 

NAEP Math Grade 4 2009 50 1990 2770 2930 3550 7810 0.175 0.602 0.942 0.038 0.139 
 Grade 4 2011 50 2710 3210 3590 4520 9880 0.167 0.587 0.933 0.031 0.135 
 Grade 8 2009 50 1890 2710 2840 3460 7530 0.263 0.658 0.922 0.042 0.115 
 Grade 8 2011 50 2130 2790 2930 3860 8280 0.255 0.645 0.918 0.032 0.105 
NAEP Reading Grade 4 2009 50 2130 2960 3130 3720 8420 0.321 0.666 0.924 0.031 0.169 

 Grade 4 2011 50 2750 3290 3720 4490 10140 0.320 0.659 0.922 0.028 0.158 
 Grade 8 2009 50 1910 2720 2840 3400 7580 0.236 0.670 0.973 0.031 0.134 
 Grade 8 2011 50 2020 2680 2815 3750 7990 0.228 0.658 0.965 0.024 0.119 

    Average 50 2191 2891 3099 3844 8454 0.246 0.643 0.937 0.032 0.134 
State Math Grade 4 2006 1244 20 48 70 93 345 0.079 0.327 0.795 0.140 0.221 

 Grade 5 2006 594 20 68 145 216 432 0.076 0.343 0.810 0.114 0.198 
 Grade 6 2006 567 20 76 162 226 563 0.081 0.345 0.785 0.152 0.226 
 Grade 7 2006 566 20 77 157 222 518 0.093 0.339 0.785 0.139 0.222 
 Grade 8 2006 428 23 104 194 276 668 0.107 0.335 0.781 0.135 0.221 
State Reading Grade 4 2006 1243 20 48 70 93 346 0.032 0.138 0.531 0.117 0.226 

 Grade 5 2006 596 20 68 147 218 431 0.012 0.086 0.551 0.102 0.202 
 Grade 6 2006 566 20 78 162 229 566 0.024 0.150 0.668 0.115 0.219 
 Grade 7 2006 567 20 78 161 226 517 0.019 0.100 0.507 0.108 0.221 
 Grade 8 2006 430 20 103 194 280 671 0.011 0.087 0.508 0.101 0.227 
    Average 680 20 75 146 208 506 0.053 0.225 0.672 0.122 0.218 
NOTE: p25 = 25th percentile; p75 = 75th percentile; ICC = intraclass correlation coefficient; CV = coefficient of variation of variances. Sample sizes are rounded 
to the nearest integer for state data. Sample sizes for NAEP are rounded to the nearest 10 to comply with NCES data reporting requirements. 
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Table D2. Correlations Between HETOP Estimates and Uncoarsened Score Estimates by Test Subject, Grade and Year. 
 

      Means Standard Deviations 
   (1) (2) (3) (4) (5) (6) (7) (8) 
  Estimate 1: H4 H20 Orig. H4 H4 H20 Orig. H4 

    Estimate 2: Orig. Trans. Trans. Trans. Orig. Trans. Trans. Trans. 

NAEP 
Math 

Grade 4 2009 0.998 1.000 1.000 0.998 0.882 0.995 0.966 0.935 
Grade 4 2011 0.997 1.000 0.999 0.998 0.923 0.998 0.963 0.967 
Grade 8 2009 0.997 1.000 1.000 0.997 0.870 0.996 0.973 0.907 
Grade 8 2011 0.997 1.000 1.000 0.997 0.890 0.995 0.978 0.901 

NAEP 
Reading 

Grade 4 2009 0.988 1.000 0.999 0.992 0.791 0.998 0.951 0.868 
Grade 4 2011 0.992 1.000 0.998 0.995 0.738 0.994 0.942 0.831 
Grade 8 2009 0.995 1.000 0.999 0.996 0.840 0.992 0.929 0.929 
Grade 8 2011 0.995 1.000 0.999 0.995 0.875 0.994 0.938 0.942 

    Average 0.995 1.000 0.999 0.996 0.851 0.995 0.955 0.910 

State 
Math 

Grade 4 2006 0.988 1.000 0.999 0.988 0.830 0.991 0.974 0.819 
Grade 5 2006 0.990 1.000 1.000 0.990 0.864 0.990 0.990 0.861 
Grade 6 2006 0.990 1.000 0.999 0.991 0.866 0.992 0.968 0.864 
Grade 7 2006 0.991 1.000 1.000 0.992 0.857 0.993 0.983 0.855 
Grade 8 2006 0.986 1.000 1.000 0.986 0.861 0.995 0.989 0.862 

State 
Reading 

Grade 4 2006 0.944 0.999 0.998 0.946 0.671 0.980 0.895 0.647 
Grade 5 2006 0.962 1.000 0.999 0.962 0.701 0.986 0.941 0.626 
Grade 6 2006 0.981 1.000 0.999 0.982 0.716 0.984 0.871 0.718 
Grade 7 2006 0.955 1.000 0.998 0.956 0.667 0.982 0.835 0.629 
Grade 8 2006 0.941 1.000 0.998 0.941 0.756 0.979 0.872 0.712 

    Average 0.973 1.000 0.999 0.973 0.779 0.987 0.932 0.759 
NOTE: H4 = heteroskedastic ordered probit model with four proficiency categories based on original 3 cutscores; H20 = heteroskedastic ordered probit model 
with 20 categories based on 19 equally spaced cutscores. Lowest correlation in each column is indicated in bold. 
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Online Appendix E: Normality Maximizing Procedure 

We would like to assess whether observed test score distributions are respectively normal. Let 

the observed scale score metric be denoted 𝑦𝑦. We assume the distributions are respectively normal, then 

find a monotonic transformation 𝑓𝑓(𝑦𝑦) = 𝑦𝑦∗ that will render the distributions of 𝑦𝑦∗ as near to normal as 

possible, and then compare the estimated group means and standard deviations in this metric to those 

estimated from the HETOP model. If they align well, it indicates that the function 𝑓𝑓 has successfully 

rendered all groups’ distributions of 𝑦𝑦∗ normal, which would only be possible under respective normality.  

Here we describe a procedure for estimating the function 𝑓𝑓 in order to transform the observed 

scale scores, and determine whether the means and standard deviations of these transformed scores, 

denoted 𝑦𝑦�∗ = 𝑓𝑓(𝑦𝑦), more closely match the HETOP estimates than do the means and standard 

deviations of the original scale scores. In section 3 we applied this procedure separately to each empirical 

grade-year-subject dataset. 

First, we standardized 𝑦𝑦 using the grand mean and standard deviation across all groups.14 Then, 

we defined a set of 𝐾𝐾 = 19 equally spaced cut points ranging from -2.25 to 2.25 in increments of 0.25. 

We denote these 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐19. Note that these cut points are in the original 𝑦𝑦 metric. We coarsened the 

standardized scale scores into 20 ordered categories using the 𝑐𝑐𝑘𝑘 cut points and treated these as 20 

ordered proficiency categories. We fit the HETOP model to the coarsened data, and obtain estimates of 

𝐌𝐌∗, 𝚺𝚺∗, 𝐂𝐂∗ (these estimates are referred to as the “HETOP20” estimates in Section 3).  

We then plotted values of 𝑐̂𝑐𝑘𝑘∗  against the values 𝑐𝑐𝑘𝑘 and used monotone cubic interpolation  (MCI; 

Fritsch & Carlson, 1980) to estimate a function 𝑓𝑓 such that 𝑓𝑓(𝑐𝑐𝑘𝑘) = 𝑐̂𝑐𝑘𝑘∗ . The use of MCI ensures that 𝑓𝑓 is 

monotonic, differentiable everywhere, and passes through all of the observed pairs (𝑐𝑐𝑘𝑘 , 𝑐̂𝑐𝑘𝑘∗). We then 

transformed the original scale scores using this MCI transformation, generating values 𝑦𝑦�∗ = 𝑓𝑓(𝑦𝑦). For 

                                                           
14 We do this only for computational convenience. Because standardizing is a linear transformation applied to all 
scale scores simultaneously, it does not impact the results of the procedure. 
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scale scores greater than 𝑐𝑐19 or less than 𝑐𝑐1 we used linear extrapolation based on the slope of the 

estimated transformation at these two endpoints. If the assumption of respective normality is valid, this 

procedure should render the 𝑦𝑦�∗ scores normally distributed within each of the 𝐺𝐺 groups. We refer to 𝑓𝑓 as 

a “normality-maximizing” function because even if the distributions are not respectively normal, it 

attempts to make them simultaneously as nearly normal as possible. Figure E1 displays the original scale 

score cutscores (after standardization) and the HETOP cutscores for all 18 datasets. 

We then computed the means and standard deviations of the transformed scale scores in each 

group. These are referred to as the as the “transformed” scale score estimates in the normalized metric 

in Section 3. 
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Figure E1. Original and Transformed (HETOP) Cutscores for All 18 Datasets.  
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