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Abstract 

 

 In a multi-site randomized trial, units are assigned at random to treatments within 

sites such as schools, hospitals, neighborhoods, or cities. Such studies are now common 

in education, social welfare, and medicine. Although most analyses to date have focused 

on estimating the average impact of random assignment, a richer summary includes the 

variance of impacts across sites and the correlation between the site-specific impact and 

the site-specific control group mean. The precise meaning of these quantities will depend 

on the population of interest. In a two-level setting, for example, one may generalize 

population of persons or a population of sites. This article introduces consistent 

estimation of means and covariance components of site-specific intention-to-treat effects 

in multi-site trials using a procedure that maximizes a weighted, multi-level, normal-

theory log-likelihood function. Weights that are functions of population sizes and sample 

sizes at each level are tailored to the target population of interest. We combine these with 

inverse probability of treatment weights within a hierarchical model (IPTW-HM) to 

eliminate biases that arise from unequal treatment allocation across sites. The data thus 

weighted typically emulate a family of balanced experimental designs, in which case our 

estimators constitute a class of nn-iterative method-of-moments estimators the properties 

of which do not depend on normality assumptions. While unbiased, these estimators may 

be inefficient. We compare this approach to two currently available analytic strategies for 

multi-site trials, each of which uses precision weighting: a site fixed effects (FE) model 

that uses ordinary least squares to estimate the average treatment effect; and a model with 

site fixed intercepts and random coefficients (FIRC) that estimates the mean and variance 

of treatment effects. We prove that FIRC produces a smaller bias and smaller standard 

errors than does FE for estimating the average treatment effect defined over a population 

of sites. We provide approximations for the FIRC bias and variance for estimating the 

average impact and the variance of the impacts across sites, and we show how to use 

these seek the best method for analyzing the data. We illustrate these methods by re-

analyzing data from two major multi-site trials: US National Welfare to Work experiment 

and the US National Head Start Impact Study.   
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1. Introduction 

 

 Since 2002, the US Institute for Education Sciences (IES) has funded over 175 

large-scale randomized trials to study the impact of a wide range of innovations. The vast 

majority of these trials are “multi-site” trials (Spybrook, 2013); that is, within each of 

many sites, units are assigned at random to participate in a novel program. In education, 

schools may be randomized within districts, classrooms may be randomized within 

schools, and sometimes the children themselves are randomized within classrooms or 

schools. However, in all cases, the multi-site trial is a “fleet of replicated experiments,” 

each conducted in a specific site characterized by specific local organizational conditions 

and clientele. This paper focuses on methods for studying the average impact, the 

variation in impact across sites, and the correlation between the site-specific control 

group mean and the site-specific impact of a new intervention.  

 

 In this paper we confine our interest to studies in which the sites may be regarded 

as representing a universe of sites that might have been selected for the study or that 

might contemplate adopting the intervention of interest. Hence, of the studies listed in 

Table 1, the National Head Start Impact Study is clearly relevant, as the sites in that study 

constituted a formal probability sample from the universe of Head Start sites.1 We regard 

the Tennessee Class Size Reduction Experiment as also relevant. In that study, children 

and teachers were assigned at random to a large or small class within each of 79 schools 

conceived here as sites. Although the 79 schools were not a formal probability sample, 

the planners of this study clearly aimed to generalize the results of this study to a larger 

universe of schools in Tennessee, with the aim of shaping statewide policy. However, the 

Moving To Opportunity Study (Kling, Liebman, and Katz, 2007), while extraordinarily 

important, falls outside the class of cases we shall consider because the sites were 5 large 

US cities – too few to be regarded as a sample from a larger universe of cities and 

therefore best regarded as “fixed” rather than “random” sites. Nor will we explicitly 

consider multi-site quasi-experiments, such as Chicago’s “Double-Dose Algebra” trial of 

a new math curriculum in each of 60 high schools (Allensworth and Nomi, 2009) because 

in that study students were selected for the novel intervention not at random but rather by 

scoring below the cut point on a math test, yielding a “Regression Discontinuity Design” 

(Cook and Campbell, 1979). However, our findings can readily be extended to a wide 

range of multi-site quasi-experiments; these can be regarded as approximations of a 

randomized trial for sub-sets of persons who are similar in background.  

 

 

  

                                                 
1 HSIS did not perfectly implement the ideal paradigm as not all sites yielded diversity in treatment, and 

there was substantial non-compliance such that a non-negligible number of children offered a place in Head 

Start and a substantial number of children assigned to the control condition managed to find a place in 

Head Start. Nevertheless, HSIS is remarkable in its capacity to produce an experiment that generalizes to a 

well-defined target population. The current paper does not consider the problem of compliance. 
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Table 1: Some Recent MS Trials

RandomSchoolsChildren2Double-Dose 

Algebra

RandomSchoolsClassrooms34 R’s

RandomSchoolsTeachers3Tennessee STAR

RandomLottery poolsChildren2Boston

Charter School 

Lotteries

Fixed5 citiesFamilies2Moving to 

Opportunity

Random378 Program 

Sites

Children2National Head 

Start Eval.

Fixed or Random 

sites

SitesAssigned 

Units

LevelsStudy

 
 Optimal sample size and treatment allocation will depend on the inferential target. 

In the Head Start Study, the aim, at least implicitly, was to generalize to the population of 

all Head Start Centers. This implies that if the Centers were a simple random sample, and 

if we knew the true impact of Head Start in every site sampled, we would weight these 

site-specific impacts equally in estimating the population average. The variance of the 

treatment effect would be of interest, as would the correlation between the control group 

mean and the treatment effect. This correlation would tell us whether sites that serve 

children whose prognosis without Head Start is poor are sites that tend to produce large 

(or small) treatment effects. Barring differences in cost or variance across sites, the 

optimal design would have a constant sample size per site with a constant fraction of 

children allocated to treatment. In practice, sample sizes varied quite dramatically from 

site to site in the Head Start study, apparently as a function of how many families applied 

to Head Start, and the fraction of persons assigned to Head Start varied accordingly, 

given the limited budget in each site. 

  

 Had the experimenters wished to generalize to a population of children, a sensible 

plan would have made the sample size per site proportional to the size of the eligible 

child population in that site, holding constant across sites the fraction assigned to 

treatment (again assuming constant site-specific costs and variances).  

 

 For simplicity, we restrict our interest to studies in which there are two treatment 

arms in each site, though extension to multi-valued treatments is straightforward. Optimal 

design for multi-site trials depends on the cost of sampling at each level, the magnitude of 

variation within treatments at each site and across sites, and the inferential goal 

(Raudenbush and Liu, 2000). The methods proposed here are readily adaptable to 

unequal costs and variances across sites, but for simplicity, the exposition here will focus 

on the case where costs and variances do not vary across sites. Covariates may be 
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introduced to increase precision or to model heterogeneity in treatment impact, but we 

avoid consideration of covariates to focus on key ideas.  

 

 We’ll show that, under weak assumptions, combining design weights with inverse 

probability of treatment weights within a hierarchical linear model (IPTW-HM) estimated 

by maximizing a weighted log-likelihood function provides consistent estimates of means 

and covariance components in multisite trials. However, this approach may produce less 

precise estimates than do approaches that weight site-specific estimates by their 

precisions. To examine the resulting bias-variance tradeoff, we compare ITPW-HM to 

two currently available estimation strategies.  

 

 The first and most widely used approach uses ordinary least squares (OLS) 

regression with site fixed effects (FE) to estimate the overall average impact. The 

approach restricts interest to the average treatment effect. The appeal of this method is 

that it uses only the within-site information to estimate the average effect. It therefore 

eliminates possible confounding between site-specific treatment allocation and/or sample 

size with site-specific intercepts. However, the FE model assumes a homogeneous 

treatment effect. If site-specific impacts are heterogeneous and are correlated with site-

specific treatment allocation or sample size, FE will produce a bias estimate of the overall 

treatment effect and an inflated variance.  

 

 Bloom, Raudenbush, Weiss, and Porter (2015) introduced an alternative approach 

with site-specific fixed effects and random coefficients (FIRC). This method shares the 

key virtue of FE: It uses only within-site information to estimate the average treatment 

effect. However, FIRC provides an estimate of the variance of the impacts across sites. 

We’ll prove that FIRC is non-strictly less biased than is FE for the mean treatment effect 

when the aim is to generalize to a population of sites and the sites in the study are 

regarded as a simple random sample of sites. In contrast FE is non-strictly less biased for 

the mean treatment effect than is FIRC when the the aim is to generalize to a population 

of persons and the persons in the sample are regarded as a self-weighting sample of 

persons in the population.  

 

 Section 2 defines potential outcomes and person-specific causal effects, leading 

naturally to a simple theoretical model for the two-level multi-site trial. We define 

estimands that depend on the target population of interest and derive weights that identify 

these estimands. Section 3 introduces consistent estimation by maximizing a weighted 

multilevel log likelihood. Section 4 compares these estimators to FE and FIRC. Section 5 

reanalyzes data from the National Welfare to Work experiment and National Head Start 

Study. We select these studies because they are substantively important and because they 

provide an interesting contrast in sampling plans. We quantify the variation in impact 

across sites and asks whether sites with high control group means produce large or small 

treatment effects. Using data from these studies, we show how to use our approximations 

to assess the asymptotic relative efficiency of FE, FIRC, and IPTW-HM for estimating 

the overall average treatment effect; and the asymptotic relative efficiency of FIRC and 

IPTW for estimating the variance of the treatment effects. We also study IPTW-HM’s 

estimates of the covariance between the control group mean and the treatment effect. 
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Finally, we extend the IPTW approach to three-level trials, which arise commonly in 

educational experiments. 

 

 

2. Theoretical Model and Estimands 

 

2.1 Theoretical Model 

 

 For clarity of exposition, we refer to level-1 units here as persons and the level-2 

units as sites. We invoke the Stable Unit Treatment Value Assumption (Rubin, 1986), 

under which each participant possesses one and only one potential outcome under each 

treatment condition. If person i within site j is assigned to treatment ( 1ijT ), we will 

observe the outcome )1(ijY ; if that person is assigned to control ( 0ijT ), we will observe 

)0(ijY . The forgoing definitions can be summarized in a simple two-level hierarchical 

model for potential outcome  1,0),( ttYij  of participant i in site j:  
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where )0()1( ijijij YYB   is the person-specific causal effect of assignment to treatment, 

)|)0(( 00 jijj UYEU   is the average untreated outcome for the SUB-population of persons 

in site j; )|( jijj BE    is the average treatment effect for this sub-population; and 

)()0()( 0 jijjijij BtUYte   is a random error. We shall assume that, this random 

error has variance 
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Looking across a population of sites, the site-specific control-group mean and treatment 

effect randomly vary 
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where the random effects ju0 and jb have zero means and variance-covariance matrix 
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2.1 Estimands 

  

 In a population composed of *J sites each composed of a sub-population of 
*

jN persons, we define the average treatment effect over a population of persons as 
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where N* is the total number of persons in the sub-population and *** / JNN  is the 

average sub-population size across sites.  

 

 In contrast, suppose we are interested generalizing to a population of sites (e.g., 

day care centers, schools, or hospitals), the population-mean impact will be  
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We can regard (2.5) and (2.6) as special cases of the more general form  
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where L specifies the level to which we shall generalize and we are weighting person-

specific causal effects ijB with weights L

ijw1 or, equivalently, we are weighting site-specific 

impacts j with weights are 
L

jw2 . When generalizing to a population of persons as in 

Equation (2.5), we have 

 

 11 persons

ijw  and **

2 / NNw j

persons

ij  .      (2.8) 

 

 In contrast, when generalizing to a population of sites (Equation 2.6), we have 

 

 1/ 2

**

1  sites

jj

sites

ij wNNw        (2.9)  

 

Clarifying the level of generalization and the appropriate weights at each level will be 

essential in clarifying estimands and estimators for two-level data and deriving the 

weights needed for estimation by IPTW-HM.  

  

 We shall focus on the first two moments of jjU ,0 across sites, which have 

general form 
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where 
L0 is the population-average control group mean and 

L is the population-

average impact;  and 
L00 , BBL , and 

LB0 are the population variance of the site-specific 

control group means, the population variance of the site-specific impacts, and the 

population covariance between the control group mean and impact. To reduce the 

notation, we shall often suppress the superscript and subscript “L” in the text that follows.   

 

2.2 Identification  

 

 We cannot of course observe both )0(ijY  and )1(ijY . Instead, we observe 

ijijijij TBYY  )0( . Following Equations (2.1) and (2.3), we can write this observed 

outcome according to the mixed model 

 

 ijijjjijij eTbuTY  00  .     (2.11) 

 

where )()0( 0 jijijjijij BTUYe  . Because ijT is randomly assigned, we confidently 

invoke the assumption of conditional independence of treatment assignment and potential 

outcomes within sites: 

 

 jSiteTTYY ijijijij  |)0(),1(       (2.12) 

 

One of the key challenges in multi-site field trials is that we cannot assume independence 

of treatment assignment and potential outcomes marginally because the site-specific 

fraction of persons assigned to treatment, that is j

n

i

ijj nTT
j

/
1




 , will tend to vary from 

site to site, often non-ignorably. For example, many multi-site trials recruit participants to 

apply for a lottery and use the lottery to assign participants at random to a novel treatment. 

The number of people who apply and therefore the probability of winning the lottery may 

depend on endogenous factors such as the perceived popularity of the program in each 

site, availability of alternative programs in a site, and the intensity of participants’ interest 

in treatment generally. In other studies, the number of available slots may depend on the 

resources available at each site or other factors not under control of the experimenter. 
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 Identification of the mean impact. It’s useful to define the “prima facie” causal 

estimands (Holland, 1986) for the two definitions of the target population. This motivates 

the derivation of the weights that identify the model for each target population.  
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Conditionally independent treatment assignment ensures that .0)()|(  etTeE  The 

form of the bias in pf will depend on the target population through the definition of the  

weights: 
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where we define *
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 for a site-level zero-man random variable 

jv . Equation 13 reveals that we can identify the average causal effect by applying a 

level-1 weight that is the product of ijw1 tailored to target the desired population, and the 

IPTW, yielding 
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 Identification of the level-2 covariance structure. Unbiased estimation of the site 

means and the overall mean insures identification of the level-2 covariance components; 

we simply make substitutions into Equation 10. In practice, modest sample sizes of 

persons per sites or of sites will pose challenges for estimation, as we’ll see in the next 

section. 

 

  Identification of the level-1 variances. Identification of the level-1 variance 

structure is interesting in itself and essential for estimation of the level-2 covariance 

structure (see the next section). It’s convenient to re-write the level-1 model as 
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Because the potential outcomes are independent of T within sites, (2.18) tends to 
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as *J increases without bound. We can readily see that using (2.15) as a weight 

eliminates the covariance term in (18) and hence identifies 2

1 . Application of (2.17) 

similarly identifies 2

0 . An important result is that heteroscedasticity across sites is no bar 

to estimation of the two level-1 variances so long as we specify separate overall level-1 

variances 2

1 for treatment participants and 2

0 for controls. This fact becomes important 

in estimating the level-2 variance components as we shall see in the next section.  
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 3. Consistent Estimation Using Inverse Probability of Treatment Weighting  

and Sample Design Weights within a Hierarchical Model 

 

 Pfefferman et al. (1997) proposed sample design weights for a two-level 

hierarchical linear model with random intercepts. We extend that approach to include 

random coefficients and, later, to three levels of variation. For the two-level case, we 

write down a weighted “complete-data” log likelihood and apply an EM algorithm to 

obtain weighted maximum likelihood estimates. When these weighted log-likelihood 

functions simulate the log-likelihood that would be obtained from a family of balanced 

designs, the estimators are generally equivalent to non-iterative method-of-moments 

estimators. Hence, such estimators will not rely on normality assumptions even though 

the “working model” (Meng, 2015) is a normal theory model. This broadens the range of 

outcomes that can be studied. However, such estimators may be quite inefficient in 

particular applications, an issue we consider later. 

 

 Robins, Hernan, and Brumback (2000) developed IPTW as a strategy for 

adjusting for confounding in non-experimental studies. Hong and Raudenbush (2008) 

embedded IPTW within a hierarchical HLM in their non-experimental assessment of 

math instruction. Hong (2010) developed theory for a non-parametric approach to IPTW 

embedded within a multilevel model; Hong and Hong (2009) and Hong, Corter, Hong, 

and Pelletier (2012) applied this approach in non-experimental settings. Application to 

multi-site randomized trial is particularly straightforward because each site’s sample 

propensity score jT is known, omitting one of the key problems in many applications of 

IPTW, namely the need to estimate the propensity score using data on observed 

covariates. Extensions to multiple levels is straightforward. A unique focus of the current 

paper is the definition of estimands at various levels and the integration of sample design 

weights and IPTW to identify means and covariance components defined for various 

target populations. 

 

3.1 Defining Weights for Two Level Multi-site Trials for a Population of Persons 

 

 Let’s first consider a two-level study in which persons are assigned at random 

within each of many sites. We’ll define weights to accomplish two purposes. The first is 

to ensure that our estimators are tailored to the target population of interest. The second is 

to eliminate confounding between the sample propensity score jT and site-level random 

effects.  

 

 Targeting the population of persons. Suppose that we could compute the true 

impact for each person in the sub-population of a given site. As described in the 

introduction (Equations 1-5), we’d weight each by 1.0 if we wanted to generalize to the 

population of persons; and that would be consistent with weighting the site-average effect 

by ./ NN j Combining this insight with IPTW gives the level-1 and level-2 weights when 

the target population is persons: 
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to size, so that 



*

1

*

1

//
J

j

jj

J

j

jj NNnn , the weights would simplify, with 11 ijw . 

 

 In many studies, we do not have a probability sample of sites or persons. However, 

in this paper, we’ll treat each as equally representative of an undefined “super-

population” of sites that might adopt an intervention and each site’s set of jn sampled 

persons are regarded as representing a sub-population of persons in that site. In this case, 

the weights defined in (3.1) are appropriate. In the remainder of this article, we shall 

assume the existence of such a sub-population.We’ll also generally regard the sample 

sizes as negligibly small fractions of the population sizes; thus we’ll treat */ jj Nn and 

*/ JJ as negligible. To eliminate bias and target the desired population we apply the 

level-1 weight (2.15) with .11 ijw  

 

3.2 Defining Weights for Two Level Multi-site Trials for a Targeting a Population of 

Sites 

 

 If we wish to generalize to population of sites (each site counted equally), we’d 

have weighted the site-average effects by 1.0. Combining this insight with IPTW gives 

the level-1 and level-2 weights when the target population is persons: 
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3.3 Maximizing a Two-Level Weighted Log-Likelihood 

 

 To obtain consistent estimators, we maximize a weighted two-level normal theory 

log likelihood. An appealing way to do this is to first write down the “complete data” 

weighted log-likelihood, that is, the weighted version of likelihood that we would 

maximize if the level-2 random effects were observed (Demptster, Rubin, and Tsutakawa, 

1981). Let’s translate our model into a more general representation of a two-level normal 

theory model,  
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T
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where  ij

T

ij TX 1 ,   T 0 ,  Tjjj bua 0 ,  is a symmetric, positive definite 

2 by 2 matrix having unique elements bbb ,000 , and ije is an independently sampled 

level-1 random effect having variance  
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2 )1( jijjijij TT   .        (3.4) 

 

 We use the EM algorithm (Dempster, Laird, and Rubin, 1977) which simulates 

maximum likelihood on the “complete data” ),( aY even though the random effects, a , 

are missing. The weighted complete-data log-likelihood is  
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 EM operates by first defining the “complete-data maximum likelihood estimates” 

(CDMLE) and then estimating, on each iteration, the weighted “complete-data sufficient 

statistics” on which those CDMLE depend by their conditional expectations given the 

observed data Y and estimates of the parameters from the previous iteration. These 

estimated CDMLE are then substituted into the formulas for the CDMLE to obtain a new 

estimate of the parameter vector. In the case of the models using weights defined by 

(3.2) , the algorithm terminates after one iteration for any reasonable starting values 

because we are simulating a class of balanced designs in which the estimators have 

closed form. 

 

3.4 Resulting Two-Level Estimators 

 

 Table 2 describes the estimating equations we obtain for generalizing to a 

population of persons and for generalizing to a population of sites. These estimators are 

unbiased and consistent for our estimands. See Appendix A for the derivation of these 

results. 
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Table 2: Weighting schemes and resulting estimating equations. 
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aWe assume here that that the sample size per site is proportional to the sub-population 

size in that site.  
bThe sampling variance )].1/(/[)ˆ( 2
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 We see from Table 2 that all estimators are defineable in closed form. These are 

equivalent to method-of-moments estimators. This will not be the case when we include 

covariates or when, in the case of targeting a population of persons, site-sample sizes are 

not proportional to site population sizes. 

 

3.5 Consistent Estimation for Three Level Multi-site Trials 

 

 The majority of randomized trials funded by the US Institute of Education 

Sciences have randomized clusters within sites (Spybrook, 2013). For example in some 

studies, students are nested within classrooms with schools and the classrooms are 

assigned at random to treatments. The schools might further be nested within districts. 

And indeed, the schools themselves might be randomly assigned to treatments. 

 

 We can readily generalize the strategy of embedding IPTW within a hierarchical 

linear model to any number of levels. We’ll illustrate how this works in the case of three 

level trials. For concreteness, let’s assume that children jkni ,...,1 are nested within 

classrooms kJj ,...,1  within schools Kk ,...,1 and that classrooms are assigned at 

random to treatments.  For simplicity, we’ll assume further that each of the jkn children 

sampled in classroom j,k equally represents a sub-population of children who might have 
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been assigned to that classroom; that each classroom has one teacher; that each of the 

kJ teachers in school k equally represents a sub population of teachers who might have 

been assigned to that school; and that each school equally represents a sub population of 

schools that might have been sampled for the experiment.  

 

 Possible target populations. We might wish to generalize results to a population 

of children, a population of teachers, or a population of schools. If we wish to generalize 

to a population of schools, we might conceive each school as a sub-population of students 

or a sub-population of teachers. So we must select one of these four target populations. 

Which target we select will determine how the weights would be constructed and applied 

to obtain estimators (see Table 3). 

 

 Table 3: Target Populations and Corresponding Weights for Three-Level Models 
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We apply these weights to the model 

 

),0(~),0(~),,0(~
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22 
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NeNrNa

eraXY

ijkrjkk

ijkjkk

T

jkijk 
     (3.6) 

 

where  jk

T

jk TX 1 ,   T 0 ;  Tkkk bua 0 is a vector of school-level random 

effects, jkr  is a scalar teacher random effect, and ,  is a symmetric, positive definite 2 by 

2 matrix having unique elements bbb ,000 , and ijke is the level-1 random effect.  

 

 We again apply the EM algorithm (Dempster, Laird, and Rubin, 1977). The 

“complete” data now include raY ,, with random effects ra, constituting the missing data. 

The weighted complete-data log-likelihood is  
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4. Alternative Estimators that Use Precision Weighting 

  

 The beauty of IPTW-HM is that, under weak assumptions, it provides consistent 

estimation of each of means and covariance components in our theoretical model. 

However, these estimates may produce large sampling variances as compared to 

competing estimators. In this section, we consider two competitors. The first is the widely 

used site fixed effects (FE) estimator. The second is a hybrid estimator that uses fixed 

intercepts and random coefficients (FIRC). We compare these approaches in the context 

of a two-level multi-site trial. 

 

 FE uses a form of precision-weighting to estimate the average treatment effect 

while FIRC uses a different form of precision weighting to estimate the average treatment 

effect and the variance. Bias will arise if the precision weights are associated with 

random, site-specific random terms. Specifically, suppose that each site generates an 

independent, unbiased estimate j̂ of a parameter   with known precision j  and that 

we estimate   by means of the precision weighted average 
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We can therefore compare alternative precision-weighted averages by comparing these 

covariance terms. We can derive mean squared errors of competing estimators by 

combining this information with information about sampling variances. 

 

4.1 Site Fixed Effects (FE)  
 

 Economists have tended to prefer a site fixed effects (FE) model (Greene, 2003; 

Angrist and Pischke, 2008) to random coefficient models. The standard FE model 

assumes constant treatment effects, so interest is confined to the population average 

treatment effect, effectively assuming 0000  bbb  . The model is 

 

 
ijjijij eTY          (4.3) 

 

where j is a site-specific fixed effect and ije is a within-site random error. This leads to 

the pooled, within-site ordinary least squares estimator 
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2/)1( jjjj TTnP  . However, this assumption can readily be relaxed.  

 

4.2 Site Fixed Effects with Random Coefficients (FIRC)  
 

 Bloom, Raudenbush, Weiss, and Porter (2009) expanded the conventional fixed 

effects model by incorporating a site-specific random treatment effect. This enabled them 

to estimate the average treatment effect and the variance of the treatment effects but not 

the correlation between the treatment effect and the control group mean. The resulting 

“fixed intercepts random coefficient model” (FIRC) can be written 

 

 ijjijjij eTbY   )( ,       (4.5) 

 

where j is again a fixed constant while ),0(~ bbj Nb  . Estimation requires an iterative 

method. If we apply the method of iterative generalized least squares (Goldstein, 1986) 

for the mean and variance of the treatment effects, we obtain at iteration m+1 the 

estimating equations   
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and 
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where  /j
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jW  , where j is the estimated “reliability of j̂ as a measure of j  

(Raudenbush and Bryk, 2002, Chapter 3) and J
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 j )/( 1)()(   jbbbb P       (4.10). 

 

 

 

4.3 Comparing the Bias of 
FE̂ and 

FIRC̂    

 

Theorem 1: If the aim of the study is to generalize to a population of sites, each 

weighted equally, )ˆ()ˆ(
FEFIRC

BiasBias    .  

 

Proof: <<The Proof is Forthcoming >> 

 

 

 

5. Comparing the Weighted Estimator to Its Competitors 

 

 Embedding sample design weights and IPTW within the framework of a 

hierarchical linear model enables us to estimate all of the parameters of that model 

consistently. Indeed, this seems to be the only available method that does so without 

making strong assumptions.  

 

 In the pursuit of consistency, however, a bias-variance tradeoff arises. The IPTW-

HM approach removes bias, but the bias we remove by weighting may be very small 

while the added variance we thus generated may be comparatively large.  

 

 In this section, we compare the asymptotic efficiency (that is, efficiency as the 

number of sites J increases without bound) of the weighting approach to that of 

alternative approaches when interest is confined to the average treatment effect and the 

variance of the treatment effects. To keep the presentation as simple as possible we’ll 

restrict our attention to two-level multi-site trials, and we’ll focus on the case in which 

the target population is a population of sites. It is in this case where the estimators are 

most likely to diverge. 
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5.1 Sampling Precision is Independent of Impact 

 

 Let’s first consider the efficiency of competing estimators of the average 

treatment effect when site-specific sampling precisions, which are based on propensity 

scores and sampling precisions, are ignorable. In this case, all of estimators considered 

here are unbiased for the parameters they estimate. We’ll see that the IPTW approach can 

be quite inefficient in these cases.  Table 4 displays the sampling variances of the three 

approaches when sampling precisions are independent of site-specific impacts. 

 

  First, if the sample sizes and/or propensity scores vary but 0bb , FE and FIRC 

are asymptotically identical and more efficient than IPTW, a fact that becomes clear 

when we inspect the ratio of variances given 0bb : 
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where )(PE is the arithmetic mean of the sampling precisions jP  and hp is the harmonic 

mean of these precisions. This ratio can be considerably greater than unity when the 

precisions vary a lot, as we’ll see in the illustrative example below.  
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Table 4: Sampling variances of three estimators when the aim is to generalize to a sites 

and site-specific sampling precisions and site-specific treatment effects are independent. 

 
a,b

The expressions for the sampling variances for FE are asymptotic in the number of sites J. 
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dominates IPTW; that is, the asymptotic relative efficiency of FIRC compared to IPTW is, 
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where  is the arithmetic mean of jbbjj PVar   )ˆ( and j
~

is the corresponding 

harmonic mean. Hence, we conclude that when sample sizes and propensity scores are 

ignorable, FIRC dominates HM-IPTW as well as FE. 

 

 Finally, we know from theory that when sample sizes and propensity scores are 

ignorable and 0bb , FIRC dominates FE. Specifically, in the model 

),(~,ˆ
jjjj NEE    , 

FIRC̂ achieves the Cramer-Rao lower variance bound in 

large-J samples. Without normality, 
FIRC̂  is best linear unbiased in large samples. 

Approximations to the asymptotic relative efficiency are complicated, but we can easily 

evaluate the formulas in Table 1 in applications, as we shall illustrate. 

 Recall also that FIRC also dominates FE (see last section). 
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5.2 Sampling Precision and Impact are Related 
  

 What happens when sample sizes and propensity scores are not ignorable? In this 

case, 
IPTW̂ remains unbiased, while 

FE̂ and 
FIRC̂ are biased and inconsistent. Hence, 

in infinite samples, 
IPTW̂ is more efficient than either of the other two methods. 

However, in moderate to large samples, the biases may be small compared to the variance 

reduction associated with 
FIRC̂ and even 

FE̂ . Therefore, to select a method of 

estimation, we’d like to know how large these biases are. We know from Section 4 that 

FEFIRC BiasBias  , but we’d like to assess the plausible size of these biases in application. 

 

 We can achieve these goals approximately by representing the two biases as a 

Taylor series. Expanding the Taylor series in the natural log precision )ln( jj P around 

the geometric mean P
~

of JjPj ,...,1,   works well. To obtain a first-order approximation, 

we’ll treat j as normally distributed, that is ),(~ 2

 Nj
 where )

~
ln(P . Appendix 

B (forthcoming) will provide a more general approximation. Under this set up, we’ll see 

that  
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where ),( bCovb   , 1)/( 1  Pbbbb


 , and we require that 1)(2  jVar  for 

the approximation to hold, a constraint that we find very realistic in application (see our 

illustrative examples). For comparison, we see that 

  

  ),/( bPPCovBiasFE b .      (5.4) 

The approximations are intuitively meaningful. If )1(  is zero, which will occur when 

impacts are highly heterogeneous, that is 
bb   is large relative to the sampling variance 

1 jj PV , FIRC weights, proportional to 1121 )(   jbbj P , will be nearly homogenous 

and 
IPTWFIRC   ˆˆ  ; hence the FIRC bias will be null. In contrast, )1(  will approach 

1.0 when 
bb is small relative to the sampling variance 12  jj PV  , so FIRC weights will 

approximate those of FE and the FIRC bias will approach the FE bias as well. We’ll see 

how to use these ideas in the illustrative example.  

 

 Table 5 summarizes these results. It also provides expressions for the asymptotic 

variance of the estimators of mean effect size. We derived the FE and FIRC variances 

under the assumption that b and )ln(P are bivariate normal. Appendix B provides our 

derivations and provides more complex expressions that are needed if the bivariate 

normal assumption is abandoned.   
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Table 5: Asymptotic Mean and Variance for the Average Treatment Effect 
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Varianceb 
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 Table 5 shows that, to the first order, )]ln(|ˆ[)ˆ( PVarVar FIRCHMIPTW  
 and 

)ˆ()ˆ( FIRCFE VarVar    .  

  

5.2 Asymptotic Relative Efficiency for the Effect Variance 

 

  Now let’s first take a look at the efficiency with which we can estimate the cross-

site variance in treatment impacts. Now FE is out of the picture, because FE assumes 

homogeneous impacts. The story now is quite simple, because the FIRC estimate of the 

variance has negligible bias. To see this, let’s approximate the expected variance estimate 

using the same method just described for the mean. We’ll see then that the large-sample 

expectation of the FIRC variance estimator is 

 

 
21** )(

1
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The asymptotic efficiency of FIRC relative to IPTW is, to the first order 
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where )( 2E is the arithmetic mean of the squared variance  and 2h
 is the harmonic 

mean of 
2**  j . The former will be considerably larger than the latter in many applications. 

 

 

 

 

 

Table 5: Asymptotic Mean and Variance for the Variance of the Treatment Effect 

 Estimator Asymptotic Biasa Asymptotic 

Varianceb 

Fixed Intercepts 

Random 

Coefficients (FIRC) 








 









J

j

jj

J

j

jjbbFIRC V
1

2

1

22 /ˆ)ˆˆ(ˆ


 0  




J

j

j

1

2**/2  

Random Intercepts 

and Coefficients 

with weighting 

(IPTW) 

JV j

J

j

jbbIPTW /ˆ)ˆˆ(ˆ
1

2









 



  0 
J

J

j

j /2
1

2


  

 

6. Illustrative Example 

 

 The Welfare to Work study is a useful example for the purposes of this paper. 

Sample sizes and propensity scores vary dramatically across the 59 sites of this study. 

Heterogeneity of effect is comparatively small across sites, but the large within-site 

sample sizes compensate so that the average reliability ( 412. ) of site-specific impact 

estimates is respectable. This is important for our purposes because FIRC and FE would 

provide similar results if reliability were small. If the reliability were near 1.0, FIRC and 

IPTW would behave very similarly, enabling us to learn little.  

 

 

6.1 Data 

 Our data set consists of pooled data from three multi-site trials conducted by 

MDRC over more than a decade: The Greater Avenues for Independence (GAIN) project 

conducted in 22 local welfare offices from six California counties (Riccio and 

Friedlander, 1992); Project Independence conducted in 10 local welfare offices from nine 

Florida counties (Kemple and Haimson, 1994); and the National Evaluation of Welfare-

to-Work Strategies conducted in 27 local welfare offices from seven states (Hamilton, 

2002). The goal was to enable persons on welfare to obtain jobs and earn more money. 
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Our aim here is to illustrate the logic of estimation theory for multi-site trials 

rather than to draw conclusions from the data. See Bloom et al. (2015) for substantive 

results, which we thank those authors for making available to us here. Table 6a provides 

the relevant data for our evaluation. Note the large and highly variable site sample sizes 

( 618,718  sdn ), and the highly variable propensity scores 13.,49.  sdT ; as a 

result, the sampling precision weights are also highly variable (note the standard 

deviation of 147.78). Despite this enormous variation, the variance of the log-transformed 

precisions of .79 is well under 1.0, the limit allowed by our approximations. Indeed, the 

approximations described above worked well as adding more terms in the Taylor series 

than those described above had a negligible effect. Table 6b shows that the impact 

variance estimate of 54902 =7712 (in dollars) provided by Bloom et al. is substantively 

meaningful relative to the average impact of 770 dollars earned per year and was highly 

statistically significant despite its small size in comparison to the within-site variance.  

 

Table  6a: Welfare to Work Design Features 

 Minimum Maximum Mean Standard 

deviation 

Sample size nj 137 2972 718 618 

Propensity score jT  .49 .86 .66 .13 

)1( jjjj TTnP   23.96 645.63 152.42 147.78 

)ln( jj P  3.17 6.47 4.68 0.79 

Reliability, j  .13 .80 .41 .18 

 

 

Table  6b: Parameter estimates from past research 

Parameter Estimate 

Average impact,               770 

Within-site variance, 2           97152 

Cross-site impact variance
bb             7712 

 

 

6.2 Results   

  

 Bias. We can approximate the ratio of bias of FIRC relative to FE for the average 

impact even without knowing the two biases using second-order approximations: 
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 Variance. We estimate the efficiency of FIRC relative to IPTW as  
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and the efficiency of FIRC relative to FE as 
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 Interestingly, )ˆ(
IPTW

Var  and )ˆ(
FE

Var  are estimated to be nearly equivalent, 

suggesting that FE puts too much weight on the sampling precisions Pj . This is not too 

surprising given that 41. while the FE weights are optimal when 0 and the IPTW 

approach of unit weighting is optimal when 1 .  

 

 The relative efficiency of FIRC compared to FE for estimating the variance is 

approximately=1.51. 
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